Preferred Language
Articles
/
voYmbYYBIXToZYAL2okk
Removal of Vanadium and Nickel Ions from Iraqi Atmospheric Residue by Using Solvent Extraction Method
...Show More Authors

Iraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal percent were found depending on the yield of asphaltene. The solvent-oil ratio had important effects on the amount of metal removal. The metals removal was increased at increasing temperatures from 30 to 90 0C increases the metal ion precipitated. The highest Ni precipitated was 79.23 ppm using heptane at 90 0C while for V the highest value was 64.51 ppm using also heptane at 90 0C, while the mixing time decreased metals removal. With increasing asphalt yield, the removal of metal was more selective. Among the solvents used in the extraction treatment method, the highest Ni precipitated was 76 ppm using hexane at 150 ml solvent and showed the most promising results. Increasing mixing time increases metals removal for V, the highest value was 65.51 ppm using either heptane or light naphtha.    The highest Ni precipitated was 78 ppm using heptane at 120 min while for V the highest value was 67 ppm using either heptane or light naphtha after 120 min.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Biosorption of Ciprofloxacin (CIP) using the Waste of Extraction Process of Microalgae: The Equilibrium Isotherm and Kinetic Study
...Show More Authors

       Scientists are investigating the efficacy of different biosorbents for promoting economic and environmental viability in purifying contaminants. Among the primary by-products of biodiesel production is waste microalgae biomass, which has the potential to be used as a cheap biosorbent for the treatment of pollution. In the present study, the biomass left over after extracting the chlorella vulgaris was used to test the potential biosorption of CIP from simulated aqueous solutions. Bisorbent's ability was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Analysis with a Fourier Transform Infrared Spectrometer revealed that C

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Estimation of the Standard Atmospheric Earth Model Parameters at 86 km Altitude
...Show More Authors

     Utilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Estimation of the Standard Atmospheric Earth Model Parameters at 86 km Altitude
...Show More Authors

     Utilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller than 9.8 m/s2.  These resu

... Show More
Preview PDF
Scopus Crossref
Publication Date
Sun Jan 12 2025
Journal Name
Baghdad Science Journal
Development of Spectrophotometric Method for Determination of Chlorpromazine-Hydrochloride in Pharmaceutical Preparations Via Use Ion-Exchange to Overcome the Interfering Ions
...Show More Authors

View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Environmental Advances
Stability and performance studies of emulsion liquid membrane on pesticides removal using mixture of Fe3O4Â nanoparticles and span80
...Show More Authors

View Publication Preview PDF
Scopus (12)
Crossref (10)
Scopus Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Engineering
Comparative Study between Nanofiltration and Reverse Osmosis Membranes for the Removal of Heavy Metals from Electroplating Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations incre

... Show More
Preview PDF
Publication Date
Fri Jun 30 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Adsorption Kinetic and Isotherms Studies of Thiophene Removal from Model Fuel on Activated Carbon Supported Copper Oxide
...Show More Authors

In the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Journal Of Engineering
Comparative Study between Nanofiltration and Reverse Osmosis Membranes for the Removal of Heavy Metals from Electroplating Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverseosmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosismembranes are made from polyamide as spiral wound module. The inorganic materials ZnCl 2 CuCl2 .2H2O, NiCl.2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parametersstudied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeateconcentration increased and water flux decreased with increase in time from 0 to 70 min. Thepermeate concentrations incre

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
International Journal Of Electrochemical Science
Synthesis and Characterization of AlyCu0.15Zn0.85-yFe2O4 Ferrite Prepared by the Sol-Gel Method
...Show More Authors

View Publication
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
New Method for the Determination of DL-Histidine by FIA and Chemiluminometric Detection
...Show More Authors

This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.

View Publication Preview PDF
Crossref