Preferred Language
Articles
/
roaqo4YBIXToZYALKZuN
Effect of green synthesis of Fe3O4 nanomaterial on the removal of cefixime from aqueous solution
...Show More Authors

In this paper, two types of iron oxide nanomaterial (Fe3O4) and nanocomposite (T-Fe3O4) were created from the bio-waste mass of tangerine peel. These two materials were utilized for adsorption tests to remove cefixime (CFX) from an aqueous solution. Before the adsorption application, both adsorbents have been characterized by various characterizations such as XRD, FTIR, VSM, TEM, and FESEM. The mesoporous nano-crystalline structure of Fe3O4 and T-Fe3O4 nanocomposite with less than 100-nm diameter is confirmed. The adsorption of the obtained adsorbents was evaluated for CFX removal by adjusting several operation parameters to optimize the removal. The optimal conditions for CFX removal were found to be an initial concentration of 40 and 50 mg/L, a dosage of 0.25 mg/50 mL, a contact time of 120 min, and a pH of 5. These settings resulted in qe max values of 41.322 and 56.49 mg g−1 onto Fe3O4 and T-Fe3O4, respectively.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 26 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Removal of Birlliant Green Dye From Aqueous Solution by Adsorption Onto Modified Clay
...Show More Authors

 Application of a Fe-bentonite nano clay (Fe-BNC) as modified clay has been investigated for the removal of birlliant green (BG) from aqueous solutions. Atomic force microscope measurements give a detailed information on pore shape and pore size distribution about the clay. These measurements show that the average diameter of the improved clay is 346.84 nm. Batch adsorption experiments were carried out for the removal of (BG) from aqueous solutions onto Fe-BNC.       Equilibrium data were fitted to Freundlich and Langmuir isotherm equations and the isotherm constants were determined. Thermodynamic parameters such as free energy, entropy and enthalpy, have been calculated.     &n

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
International Journal Of Research In Medical Sciences & Technology
GREEN SYNTHESIS OF SILVER NANOPARTICLE USING GREEN TEA LEAVES EXTRACT FOR REMOVAL CIPROFLOXACIN (CIP) FROM AQUEOUS MEDIA
...Show More Authors

This study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorpti

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Removal of Ciprofloxacin Antibiotic from Synthesized Aqueous Solution Using Three Different Metals Nanoparticles Synthesized Through the Green Method
...Show More Authors

This study investigates the possibility of removing ciprofloxacin (CIP) using three types of adsorbent based on green-prepared iron nanoparticles (Fe.NPs), copper nanoparticles (Cu. NPS), and silver nanoparticles (Ag. NPS) from synthesized aqueous solution. They were characterized using different analysis methods. According to the characterization findings, each prepared NPs has the shape of a sphere and with ranges in sizes from of 85, 47, and 32 nanometers and a surface area of 2.1913, 1.6562, and 1.2387 m2/g for Fe.NPs, Cu.NPs and Ag.NPs, respectively. The effects of various parameters such as pH, initial CIP concentration, temperature, NPs dosage, and time on CIP removal were investigated through batch experiments. The res

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering Science And Technology
Green synthesis of iron nanoparticle using tea leave extract for removal ciprofloxacin (CIP) from aqueous medium
...Show More Authors

The approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10),

... Show More
Scopus (4)
Scopus
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Ecological Engineering
Removal of Nitrate from Aqueous Solution by Bio-Calcium from Iraqi Eggshells
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Al-khwarizmi Engineering Journal
Removal of Malachite Green from Aqueous Solution using Ficus Benjamina Activated Carbon-Nonmetal Oxide synthesized by pyro Carbonic Acid Microwave
...Show More Authors

Activated carbon derived from Ficus Binjamina agro-waste synthesized by pyro carbonic acid microwave method and treated with silicon oxide (SiO2) was used to enhance the adsorption capability of the malachite green (MG) dye. Three factors of concentration of dye, time of mixing, and the amount of activated carbon with four levels were used to investigate their effect on the MG removal efficiency. The results show that 0.4 g/L dosage, 80 mg/L dye concentration, and 40 min adsorption duration were found as an optimum conditions for 99.13% removal efficiency. The results also reveal that Freundlich isotherm and the pseudo-second-order kinetic models were the best models to describe the equilibrium adsorption data.

 

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon May 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Removal of Methyl Orange From Aqueous Solution By Iraqi Bentonite Adsorbent
...Show More Authors

 The adsorption behavior of methyl orange from aqueous solution on Iraqi bentonite was investigated. The effects of various parameters such as initial concentration of methyl orange, amount of adsorbent, ionic strength and temperature on the adsorption capacity has been studied. The percentage removal of methyl orange increased with the decrease of initial concentration of methyl orange and it increased with the increase of dose of adsorbent. The adsorbed amount of methyl orange decrease with increasing ionic strength and an increase in temperature. The equilibrium adsorption isotherms have been analysed by the linear, Langmuir and Temkin models. The Langmuir isotherms have the highest correlation coefficients. Thermodynamic paramet

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Removal of Reactive Dyes by Electro Coagulation Process from Aqueous Solution
...Show More Authors

The presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Sep 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Phenol Compounds from Aqueous Solution Using Coated Sand Filter Media
...Show More Authors

Coated sand (CS) filter media was investigated to remove phenol and 4-nitrophenol from aqueous solutions in batch experiments. Local sand was subjected to surface modification as impregnated with iron. The influence of process variables represented by solution pH value, contact time, initial concentration and adsorbent dosage on removal efficiency of phenol and 4-nitrophenol onto CS was studied. Batch studies were performed to evaluate the adsorption process, and it was found that the Langmuir isotherm effectively fits the experimental data for the adsorbates better than the Freundlich model with the CS highest adsorption capacity of 0.45 mg/g for 4-nitrophenol and 0.25 mg/g for phenol. The CS was found to adsorb 85% of 4-nitrophenol and

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of-Copper Ions-from Aqueous Solution Using Liquid-Surfactant-Membrane Technique
...Show More Authors

Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p

... Show More
View Publication Preview PDF
Crossref (9)
Crossref