Preferred Language
Articles
/
vmFeYZkBdMdGkNqjgCY2
Prevalence of Toxocara spp. in Cats and Detection of Intestinal Helminth Infections in Humans
...Show More Authors

This study aimed to investigate the prevalence of intestinal helminth infections in humans and detect Toxocara spp. in cats, with a focus on assessing the impact of age and gender on infection rates. Traditional diagnostic methods have historically limited the accurate identification of helminth infections in humans. Analysis of 450 human stool samples revealed an overall helminth infection rate of 5.7% using conventional techniques. The specific infection rates were 0.4% for Strongyloides stercoralis, 0.6% for Schistosoma mansoni, 1.7% for Hymenolepis nana, and 2.8% for Ascaris lumbricoides. Notably, no infections were recorded in the 30–39 and ≥40-year age groups, while the highest infection rate (16.3%, P≤0.01) was observed in individuals aged 20–29 years. With respect to gender, males exhibited a significantly higher (P≤0.01) infection rate (7.5%) compared to females (4%). Additionally, human sera were tested serologically using indirect ELISA for IgG antibodies, with a positivity rate of 10.4%. Age-wise, no positive cases were recorded in the 20–29 year group, while positivity rates of 8% and 24% were found in the 30–39 and >40 year groups, respectively, showing a significant difference (P≤0.01). In terms of gender, females had a significantly higher (P≤0.01) seroprevalence (15.2%) than males (6%). In domestic and stray cats, the overall prevalence of Toxocara spp. was 12%, with a significantly higher (P≤0.01) infection rate in kittens compared to adult cats. This study revealed notable prevalence of intestinal helminths in humans and Toxocara spp. in cats, with age and gender influencing infection rates. The findings emphasize the need for improved parasite control and public health measures to reduce zoonotic risks.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
COMPARATIVE STUDY FOR EDGE DETECTION OF NOISY IMAGE USING SOBEL AND LAPLACE OPERATORS
...Show More Authors

Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
Developing of bacterial mutagenic assay system for detection
...Show More Authors

Been Antkhav three isolates of soil classified as follows: Bacillus G3 consists of spores, G12, G27 led Pal NTG treatment to kill part of the cells of the three isolates varying degrees treatment also led to mutations urged resistance to streptomycin and rifampicin and double mutations

View Publication Preview PDF
Publication Date
Wed May 24 2023
Journal Name
2023 9th International Conference On Information Technology Trends (itt)
A Comparative Study of Unauthorized Drone Detection Techniques
...Show More Authors

View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jun 24 2020
Journal Name
Neuroimaging - Neurobiology, Multimodal And Network Applications
Electroencephalogram Based Biomarkers for Detection of Alzheimer’s Disease
...Show More Authors

Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have n

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Apr 28 2021
Journal Name
2021 1st Babylon International Conference On Information Technology And Science (bicits)
Enhanced Twitter Community Detection using Node Content and Attributes
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Oct 04 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The

... Show More
Publication Date
Tue Oct 18 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM

... Show More
Scopus (15)
Crossref (16)
Scopus Clarivate Crossref