The use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree model. Having been in this research compare these methods form a model for additive function to some nonparametric function. It was a trade-off between these process models based on the classification accuracy by misclassification error, and estimation accuracy by the root of the mean squares error: RMSE. It was the application on patients with diabetes data for those aged 15 years and below are taken from the sample size (200) was withdrawn from the Children Hospital in Al-Eskan / Baghdad.
In this paper two modifications on Kuznetsov model namely on growth rate law and fractional cell kill term are given. Laplace Adomian decomposition method is used to get the solution (volume of the tumor) as a function of time .Stability analysis is applied. For lung cancer the tumor will continue in growing in spite of the treatment.
The aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreIn this research, a mathematical model of tumor treatment by radiotherapy is studied and a new modification for the model is proposed as well as introducing the check for the suggested modification. Also the stability of the modified model is analyzed in the last section.
The aim of the research is to measure the efficiency of the companies in the industrial sector listed in the Iraqi Stock Exchange , by directing these companies to their resources (inputs) towards achieving the greatest possible returns (outputs) or reduce those resources while maintaining the level of returns to achieve the efficiency of these companies, therefore, in order to achieve the objectives of the research, it was used (Demerjian.et.al) model to measure the efficiency of companies and the factors influencing them. The researchers had got a number of conclusions , in which the most important of them is that 66.6% of the companies in the research sample do no
... Show MoreThe researchers have a special interest in studying Markov chains as one of the probability samples which has many applications in different fields. This study comes to deal with the changes issue that happen on budget expenditures by using statistical methods, and Markov chains is the best expression about that as they are regarded reliable samples in the prediction process. A transitional matrix is built for three expenditure cases (increase ,decrease ,stability) for one of budget expenditure items (base salary) for three directorates (Baghdad ,Nineveh , Diyala) of one of the ministries. Results are analyzed by applying Maximum likelihood estimation and Ordinary least squares methods resulting
... Show MoreAbstract
This research attempt to explain the essential aspects of one important model in management of Bank risks , that is (stress testing) , which increase the concentrate on it resulting the negative affects of Global financial crisis that it accuar in 2008 to study the application possibilities in iraqian banks to enhancing the safety and financial soundness Becuase the classical tools in Risk management don’t give clear image on Banks ability in facing risks, hence the Basel committee on Banking supervision focusing in agreement of Basel 2,3 on stress testing when it doing the internal capital adequacy assessment process (ICAAP) .
To achieving the reseach obje
... Show More