The use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree model. Having been in this research compare these methods form a model for additive function to some nonparametric function. It was a trade-off between these process models based on the classification accuracy by misclassification error, and estimation accuracy by the root of the mean squares error: RMSE. It was the application on patients with diabetes data for those aged 15 years and below are taken from the sample size (200) was withdrawn from the Children Hospital in Al-Eskan / Baghdad.
The process of evaluating data (age and the gender structure) is one of the important factors that help any country to draw plans and programs for the future. Discussed the errors in population data for the census of Iraqi population of 1997. targeted correct and revised to serve the purposes of planning. which will be smoothing the population databy using nonparametric regression estimator (Nadaraya-Watson estimator) This estimator depends on bandwidth (h) which can be calculate it by two ways of using Bayesian method, the first when observations distribution is Lognormal Kernel and the second is when observations distribution is Normal Kernel
... Show MoreThe prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff
... Show MoreIn this paper all possible regressions procedure as well as stepwise regression procedure were applied to select the best regression equation that explain the effect of human capital represented by different levels of human cadres on the productivity of the processing industries sector in Iraq by employing the data of a time series consisting of 21 years period. The statistical program SPSS was used to perform the required calculations.
This research was designed to investigate the factors affecting the frequency of use of ride-hailing in a fast-growing metropolitan region in Southeast Asia, Kuala Lumpur. An intercept survey was used to conduct this study in three potential locations that were acknowledged by one of the most famous ride-hailing companies in Kuala Lumpur. This study used non-parametric and machine learning techniques to analyze the data, including the Pearson chi-square test and Bayesian Network. From 38 statements (input variables), the Pearson chi-square test identified 14 variables as the most important. These variables were used as predictors in developing a BN model that predicts the probability of weekly usage frequency of ride-hai
... Show MoreSome experiments need to know the extent of their usefulness to continue providing them or not. This is done through the fuzzy regression discontinuous model, where the Epanechnikov Kernel and Triangular Kernel were used to estimate the model by generating data from the Monte Carlo experiment and comparing the results obtained. It was found that the. Epanechnikov Kernel has a least mean squared error.
This paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show MoreIn this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
In this paper two modifications on Kuznetsov model namely on growth rate law and fractional cell kill term are given. Laplace Adomian decomposition method is used to get the solution (volume of the tumor) as a function of time .Stability analysis is applied. For lung cancer the tumor will continue in growing in spite of the treatment.
