Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
Abstract
The analysis of Least Squares: LS is often unsuccessful in the case of outliers in the studied phenomena. OLS will lose their properties and then lose the property of Beast Linear Unbiased Estimator (BLUE), because of the Outliers have a bad effect on the phenomenon. To address this problem, new statistical methods have been developed so that they are not easily affected by outliers. These methods are characterized by robustness or (resistance). The Least Trimmed Squares: LTS method was therefore a good alternative to achieving more feasible results and optimization. However, it is possible to assume weights that take into consideration the location of the outliers in the data and det
... Show MoreThe pharmacy is the face for the health buildings and hospitals, The linking professional relationships and functional, it is been from the important places that most people go it, so according to that we must format its interior design in form that suitable with the need of most people use it or work in it, and this the search goal, dashing from the search subject which to hide finding designer treatment for the pharmacies interior spaces, to give share in the functional improvement performance or aesthetic. We define the search goals to share in educate the pharmacist in the effect of interior design for improvement of interior environment, in addition to the search consider as designer trying add to the other trying the interior desig
... Show MoreThe purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
The current research deals with studying the aesthetics of symbolic values in the design of internal spaces and their connotations through their existence as a material value, as well as the symbolic meanings and their connotations that touch the spiritual and emotional side of the human being as an intangible value, and the research included four chapters, so the research problem was embodied by the following question (What is the role of values Symbolism and aesthetics in the design of interior spaces)? Therefore, the aim was to clarify the role of symbolic values and their aesthetics in the design of internal spaces. The first chapter included the importance of research, the need for it, the limits of the research and its terminology.
... Show MoreIn this paper, we proved coincidence points theorems for two pairs mappings which are defined on nonempty subset in metric spaces by using condition (1.1). As application, we established a unique common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly commuting) between these mappings.