Preferred Language
Articles
/
vhe4C5IBVTCNdQwCfZ39
Approximation by Convex Polynomials in Weighted Spaces

Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity

Publication Date
Fri Sep 18 2020
Journal Name
Hal Open Science
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri

... Show More
View Publication
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Iterative Methods for Approximation of Fixed Points Via Like Contraction Mappings
Abstract<p>The aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF
Publication Date
Thu Sep 08 2022
Journal Name
Mathematical Statistician And Engineering Applications
δ-Semi Normal and δ-Semi Compact Spaces

In this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces

View Publication Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
Strong and Weak Forms of μ-Kc-Spaces

In this paper, we provide some types of - -spaces, namely, - ( )- (respectively, - ( )- , - ( )- and - ( )-) spaces for minimal structure spaces which are denoted by ( -spaces). Some properties and examples are given.
The relationships between a number of types of - -spaces and the other existing types of weaker and stronger forms of -spaces are investigated. Finally, new types of open (respectively, closed) functions of -spaces are introduced and some of their properties are studied.

Scopus (2)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Apr 02 2018
Journal Name
University Of Baghdad, College Of Education For Pure Sciences / Ibn Al-haitham, Department Of Mathematics
A Study of Some Generalizations of Fibrewise Bitopological Spaces

In this research, we introduce and study the concept of fibrewise bitopological spaces. We generalize some fundamental results from fibrewise topology into fibrewise bitopological space. We also introduce the concepts of fibrewise closed bitopological spaces,(resp., open, locally sliceable and locally sectionable). We state and prove several propositions concerning with these concepts. On the other hand, we extend separation axioms of ordinary bitopology into fibrewise setting. The separation axioms we extend are called fibrewise pairwise T_0 spaces, fibrewise pairwise T_1 spaces, fibrewise pairwise R_0 spaces, fibrewise pairwise Hausdorff spaces, fibrewise pairwise functionally Hausdorff spaces, fibrewise pairwise regular spaces, fibrewise

... Show More
Publication Date
Thu Nov 15 2018
Journal Name
Journal Of Mathematical Imaging And Vision
Scopus (31)
Crossref (27)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 01 2013
Journal Name
Iraqi Journal Of Physics
Describing the Wavefront Aberrations of the Hexagonal Aperture Using Modified Zernike Polynomials

n Segmented Optical Telescope (NGST) with hexagonal segment of spherical primary mirror can provide a 3 arc minutes field of view. Extremely Large Telescopes (ELT) in the 100m dimension would have such unprecedented scientific effectiveness that their construction would constitute a milestone comparable to that of the invention of the telescope itself and provide a truly revolutionary insight into the universe. The scientific case and the conceptual feasibility of giant filled aperture telescopes was our interested. Investigating the requirements of these imply for possible technical options in the case of a 100m telescope. For this telescope the considerable interest is the correction of the optical aberrations for the coming wavefront, th

... Show More
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Wang-Ball Polynomials for the Numerical Solution of Singular Ordinary Differential Equations

This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF