Preferred Language
Articles
/
vhe4C5IBVTCNdQwCfZ39
Approximation by Convex Polynomials in Weighted Spaces
...Show More Authors

Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity

Publication Date
Sun Jan 01 2017
Journal Name
Ieee Access
On Computational Aspects of Tchebichef Polynomials for Higher Polynomial Order
...Show More Authors

View Publication
Scopus (53)
Crossref (54)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Baghdad Science Journal
Bernoulli Polynomials Method for Solving Integral Equations with Singular Kernel
...Show More Authors

هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Ain Shams Engineering Journal
Performance enhancement of high degree Charlier polynomials using multithreaded algorithm
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Some K-Banhatti Polynomials of First Dominating David Derived Networks
...Show More Authors

Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jun 04 2024
Journal Name
Computation
High-Performance Krawtchouk Polynomials of High Order Based on Multithreading
...Show More Authors

Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
An efficient multistage CBIR based on Squared Krawtchouk-Tchebichef polynomials
...Show More Authors
Abstract<p>Image databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p</p> ... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Achieving a theoretical approximation characterize the stopping power of heavy ion in D-T plasma
...Show More Authors

The dependence of the energy losses or the stopping power for the ion contribution in D- T hot plasma fuels upon the corresponding energies and the related penetrating factorare arrive by using by a theoretical approximation models. In this work we reach a compatible agreement between our results and the corresponding experimental results.

View Publication Preview PDF
Scopus
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Piezoelectric Flexible Beams
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 18 2020
Journal Name
Hal Open Science
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms
...Show More Authors

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri

... Show More
View Publication
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions
...Show More Authors

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF