Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.
Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreTraumatic Brain Injury (TBI) is still considered a worldwide leading cause of mortality and morbidity. Within the last decades, different modalities were used to assess severity and outcome including Glasgow Coma Scale (GCS), imaging modalities, and even genetic polymorphism, however, determining the prognosis of TBI victims is still challenging requiring the emerging of more accurate and more applicable tools to surrogate other old modalities
In this paper has been building a statistical model of the Saudi financial market using GARCH models that take into account Volatility in prices during periods of circulation, were also study the effect of the type of random error distribution of the time series on the accuracy of the statistical model, as it were studied two types of statistical distributions are normal distribution and the T distribution. and found by application of a measured data that the best model for the Saudi market is GARCH (1,1) model when the random error distributed t. student's .
Background: Oral health represents an important base for human well-being; the heath of the body begins from oral cavity. Great deal has been applied to increase knowledge in the field of oral health in order to develop appropriate preventive program. This study was conducted in order to estimate the percentage and severity of dental caries and gingivitis among children attending Preventive Department in Collage of Dentistry, University of Baghdad and to determine dental treatment need for those patients, further more to study the relation of these variables with dental knowledge. Materials and Methods: The study group consists of 163 children with an age ranged from 6 to 14 years, who attended the preventive clinic for the first time to be
... Show Moreتسعى المحاسبة الى مسايرة القفزات الهائلة والمتسارعة في تطور العلوم الصرفة والتطبيقية والتقدم التكنولوجي، والتي ادت على ظهور مفاهيم جديدة الغت مسلمات وبديهيات كانت سائدة لمدة طويلة، فعلى سبيل المثال: كان مخزون المواد الاولية والبضاعة التامة في المؤسسات الصناعية او التجارية يشكل العمود الفقري لها بتكاليفه ومشاكله، حتى اذا ما جاء نظام (JIT) الغى بتطبيقاته هذه المفاهيم واعتمد م
... Show MoreThe role of filamentous bacteria represented by Streptomycessp was studied as biological treatment for activated sludge AL- Restomia treatment unit in Baghdad city. The result shows reducing in phosphate concentration where apprise in started entrance the treatment unit 12.083 mg/L fast the unit stages reached to 8.426 mg /L where nitrate concentration apprises 3.59 mg/l and ending in 2.43 mg/L The concentration of ammonia apprises 1358 mg/L and reached to 140 mg/L. also the TDS concentration reduced from 1426 to 1203 mg/L where nutrient which represented (SO4, Mg, Ca, Na, K) reduced by range 30.883- 23.337 , 194- 121 , 440- 321 , 109.03- 101.53 and 16.85- 15.4mg/L respectively COD reduce from427.263- 82mg/L with absorbance0.018- 0.027
... Show MoreAmputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show More