Accurate land use and land cover (LU/LC) classification is essential for various geospatial applications. This research applied a Spectral Angle Mapper (SAM) classifier on the Landsat 7 (ETM+ 2010) & 8 (OLI 2020) satellite scenes to identify the land cover materials of the Shatt al-Arab region which is located in the east of Basra province during ten years with an estimate of the spectral signature using ENVI 5.6 software of each cover with the proportion of its area to the area of the study region and produce maps of the classified region. The bands of these datasets were analyzed using the Optimum Index Factor (OIF) statistic. The highest OIF represents the best and most appropriate band combination calculated for the classification process are (SWIR_2, SWIR_1, Blue) and (SWIR_2, SWIR_1, coastal aerosol) bands combination at (100.236 & 104.154) for ETM+, and OLI datasets, respectively, which adopted to obtain the most accurate interpretation of the land cover. The Landsat 7 (ETM+ 2010) is selected as a reference year to study the change in land cover features through ten years for this region using the novel Scene Optimum Index Factor (SOIF), which was suggested in this research. The amount of change for vegetation cover was 34 %, using the SAM classifier. The urban class was the most stable, and the rate of change was 23 %. The most affected were the water bodies, where the rate of change reached 73% due to the region falling into the tails of rivers, as well as the lack of water discharges coming from neighbouring and upstream countries. The research provides important information about land cover changes over the past decade due to the precise spectral analyses, showing the need for monitoring natural resources, especially in environmentally sensitive areas such as water bodies and vegetation cover. Environmental conservation efforts and continuous planning in affected regions may be supported by these findings.
Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreAbsitract
This research was interested in studying the phrase “I don’t know” in the Lisan al-Arab dictionary, and Lisan al-Arab was based on collecting its material from five dictionaries, including: Tahdhib al-Lugha, al-Muqamah, al-Sahih, and the footnotes of Ibn Berri, al-Nihaya and Gharib al-Hadith. The objection to this phrase, and the discussion of its various implications among linguists and the clarification of the closest and most famous content to it according to the data presented to the researcher in his research journey, and to reach this goal, the research division into a preface, five demands and a conclusion and followed the list of sources and references. To define the lexicon of Lisan al-Ar
... Show MoreAbstract: The premise of the study is that populism is a process of building political views and critical intellectual orientations among the general public. It is transformed into mass beliefs by mobilizing the society ideologically and continuously in order to reach or control the circle of authority. We distributed the study topics to four sections: In the second, we will discuss the contents of contemporary populism and how other forms of populism evolved historically. The third is to discuss the political discourse of populism among the military regimes and the comparative Islamic parties in the Middle East, especially in terms of the essence and the intellectual foundations. The fourth section seeks to examine the characteristics o
... Show MoreChange detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula
... Show MoreClimate change in recent years has greatly affected the distribution of ground covers. Monitoring these changes has become very easy due to the development of remote sensitivity science and the use of satellites to monitor these changes. The aim of this research is to monitor changes in the spectral reflectivity of the Baghdad governorate center for the month (March, June, September, December) of the year 2021 using remote sensing and satellite images Sentinel 2 and knowing the climate imact on them. Fifty-one samples were selected for four types of ground cover (agricultural land, water, buildings and open space) and their spectral reflectivity was calculated using satellite images.
In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show More