Preferred Language
Articles
/
vRhcJ5gBVTCNdQwCOLns
Enhancing Cloud Security Implementing AI-Based Intrusion Detection Systems
...Show More Authors

The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion detection systems in the cloud may provide challenges. The pre-established IDS design may overburden a cloud segment due to the additional detection overhead. Within the framework of an adaptively designed networked system. We demonstrate how to fully use available resources without placing undue load on any one cloud server using an intrusion detection system (IDS) based on neural networks. To even more successfully detect new threats, the suggested IDS make use of neural network machine learning (ML).

Scopus Crossref
View Publication
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
Detection of Chlamydia pneumoniae in Ankylosing Spondylitis Patients
...Show More Authors

Ankylosing spondylitis is a complex debilitating disease because its pathogenesis is not clear. This study aims at detecting some pathogenesis factors that lead to induce the disease. Chlamydia pneumoniae is one of these pathogenesis factors which acts as a triggering factor for the disease. The study groups included forty Iraqi Ankylosing spondylitis patients and forty healthy persons as a control group. Immunological and molecular examinations were done to detect Chlamydia. pneumoniae in AS group. The immunological results were performed by Enzyme-Linked Immunosorbent Assay (ELISA) to detect anti-IgG and anti-IgM antibodies of C. pneumoniae revealed that five of forty AS patients' samples (12.5%) were positive for anti-IgG and IgM C. pneu

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
Disc damage likelihood scale recognition for Glaucoma detection
...Show More Authors
Abstract<p>Glaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma d</p> ... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Innovative Systems Design And Engineering
Automated Surface Defect Detection using Area Scan Camera
...Show More Authors

Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
Developing of bacterial mutagenic assay system for detection
...Show More Authors

Been Antkhav three isolates of soil classified as follows: Bacillus G3 consists of spores, G12, G27 led Pal NTG treatment to kill part of the cells of the three isolates varying degrees treatment also led to mutations urged resistance to streptomycin and rifampicin and double mutations

View Publication Preview PDF
Publication Date
Wed Sep 11 2019
Journal Name
Journal Of Mechanical Engineering Research And Developments
INDUSTRIAL TRACKING CAMERA AND PRODUCT VISION DETECTION SYSTEM
...Show More Authors

View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Al-khwarizmi Engineering Journal
Defect Detection Using Thermography Camera Techniques: A review
...Show More Authors

Individuals across different industries, including but not limited to agriculture, drones, pharmaceuticals and manufacturing, are increasingly using thermal cameras to achieve various safety and security goals. This widespread adoption is made possible by advancements in thermal imaging sensor technology. The current literature provides an in-depth exploration of thermography camera applications for detecting faults in sectors such as fire protection, manufacturing, aerospace, automotive, non-destructive testing and structural material industries. The current discussion builds on previous studies, emphasising the effectiveness of thermography cameras in distinguishing undetectable defects by the human eye. Various methods for defect

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for Facial Image Detection System
...Show More Authors

HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023

View Publication
Scopus (7)
Scopus
Publication Date
Wed May 24 2023
Journal Name
2023 9th International Conference On Information Technology Trends (itt)
A Comparative Study of Unauthorized Drone Detection Techniques
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Tue Oct 12 2021
Journal Name
Engineering, Technology And Applied Science Research
Automated Pavement Distress Detection Using Image Processing Techniques
...Show More Authors

Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit

... Show More
Scopus (29)
Crossref (25)
Scopus Crossref
Publication Date
Tue Dec 30 2025
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Deep Spoof Face Detection Techniques in React Native
...Show More Authors

The rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimiz

... Show More
View Publication
Crossref