Preferred Language
Articles
/
vRgkBJgBVTCNdQwCuKki
A New Intrusion Detection Approach Based on RNA Encoding and K-Means Clustering Algorithm Using KDD-Cup99 Dataset
...Show More Authors

Intrusion detection systems (IDS) are useful tools that help security administrators in the developing task to secure the network and alert in any possible harmful event. IDS can be classified either as misuse or anomaly, depending on the detection methodology. Where Misuse IDS can recognize the known attack based on their signatures, the main disadvantage of these systems is that they cannot detect new attacks. At the same time, the anomaly IDS depends on normal behaviour, where the main advantage of this system is its ability to discover new attacks. On the other hand, the main drawback of anomaly IDS is high false alarm rate results. Therefore, a hybrid IDS is a combination of misuse and anomaly and acts as a solution to overcome the disadvantages of these two methods. In this paper, a new hybrid IDS is proposed based on the RNA encoding idea and applying the K-means clustering algorithm. Firstly, choosing random records for both training and testing. Secondly, propose RNA encoding by calculating all possible record values within dataset and generating RNA characters for each value, then dividing it into blocks. The third step is done by searching and extracting normal keys based on the most repeated blocks, and the same procedure is applied to extract the attack keys. Finally, the Kmeans clustering method is used to classify the testing records based on extracted keys. The proposed method is evaluated by calculating the detection rate (DR), false alarm rate (FAR), and accuracy, where the achieved DR, FAR, and accuracy are equal to 91.13%, 0.46%, and 92.02% respectively. Based on the achieved results, it can be said that the proposed hybrid IDS has high DR and accuracy results, can detect new attacks, and can solve the problem of anomaly IDS by getting a low false alarm rate result.

Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 03 2025
Journal Name
Isa Transactions
Optimal hybrid type-3 fuzzy controller for horizontal axis wind turbines: Comparative study
...Show More Authors

The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six differen

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Dec 03 2023
Journal Name
2023 Ieee International Conference On Energy Technologies For Future Grids (etfg)
Optimal Hybrid Type-2 Fuzzy-PID Controller for Blade Pitch Angle in Horizontal-axis Wind Turbines
...Show More Authors

In the modern world, wind turbine (WT) has become the largest source of renewable energy. The horizontal-axis wind turbine (HAWT) has higher efficiency than the vertical-axis wind turbine (VAWT). The blade pitch angle (BPA) of WT is controlled to increase output power generation over the rated wind speed. This paper proposes an accurate controller for BPA in a 500-kw HAWT. Three types of controllers have been applied and compared to find the best controller: PID controller (PIDC), fuzzy logic type-2 controller (T2FLC), and hybrid type-2 fuzzy-PID controller (T2FPIDC). This paper has been used Mamdani and Sugeno fuzzy inference systems (FIS) to find the best inference system for WT controllers. Furthermore, genetic algorithm (GA) and particl

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref