The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
The pharmacy is the face for the health buildings and hospitals, The linking professional relationships and functional, it is been from the important places that most people go it, so according to that we must format its interior design in form that suitable with the need of most people use it or work in it, and this the search goal, dashing from the search subject which to hide finding designer treatment for the pharmacies interior spaces, to give share in the functional improvement performance or aesthetic. We define the search goals to share in educate the pharmacist in the effect of interior design for improvement of interior environment, in addition to the search consider as designer trying add to the other trying the interior desig
... Show MoreWe use the idea of Grill, this study generalized a new sort of linked space like –connected –hyperconnected and investigated its features, as well as the relationship between it and previously described notation. It also developed new sorts of functions, such as hyperconnected space, and identifying their relationship, by offering numerous instance and attributes that belong to this set. This set will serve as a starting point for further research into the sets many future possibilities. Also, we use some of the theorems and observations previously studied and relate them to the grill and the Alpha group, and benefit from them in order to obtain new results in this research. We applied the concept of Connected to them and obtained
... Show MoreIn this article, results have been shown via using a general quasi contraction multi-valued mapping in Cat(0) space. These results are used to prove the convergence of two iteration algorithms to a fixed point and the equivalence of convergence. We also demonstrate an appropriate conditions to ensure that one is faster than others.
The visual stimulus is the effective force in visual attraction that achieves visual and perceptual co-optation and is important in wooing the recipient, and many procedural processes in the design are interpreted on it as the visual stimulus achieves visual comfort and a sense of pleasure and gives (place) the interior space a transformation in its plastic structure as well as arousing attention through The kinetic rhythm and the formal diversity, which increases the possibility of breaking the routine and traditional constraints of design patterns through the coating and encapsulation of the vertical and horizontal levels . Thus, the research problem was launched based on the following question: What are the stimuli of the visual stimu
... Show MoreIn this paper, the definition of fuzzy anti-inner product in a linear space is introduced. Some results of fuzzy anti-inner product spaces are given, such as the relation between fuzzy inner product space and fuzzy anti-inner product. The notion of minimizing vector is introduced in fuzzy anti-inner product settings.
In thisipaper, we introduce the concepts of the modified tupledicoincidence points and the mixed finiteimonotone property. Also the existenceiand uniquenessiof modified tupled coincidenceipoint is discusses without continuous condition for mappings having imixed finite monotoneiproperty in generalizedimetric spaces.
The aim of this paper is to study the best approximation of unbounded functions in the
weighted spaces
,
1, 0 ,
p
p L α
α ≥>.
Key Words: Weighted space, unbounded functions, monotone approximation
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
This paper introduces cutpoints and separations in -connected topological spaces, which are constructed by using the union of vertices set and edges set for a connected graph, and studies the relationships between them. Furthermore, it generalizes some new concepts.