Solid waste is a major issue in today's world. Which can be a contributing factor to pollution and the spread of vector-borne diseases. Because of its complicated nonlinear processes, this problem is difficult to model and optimize using traditional methods. In this study, a mathematical model was developed to optimize the cost of solid waste recycling and management. In the optimization phase, the salp swarm algorithm (SSA) is utilized to determine the level of discarded solid waste and reclaimed solid waste. An optimization technique SSA is a new method of finding the ideal solution for a mathematical relationship based on leaders and followers. It takes a lot of random solutions, as well as their outward or inward fluctuations, to find the optimal solution. This method also included multiple adaptive and random variables to guarantee that the solution space was explored and used in various optimization tasks. When all criteria are considered, the results of this study show that the SSA is efficient for least-distance path allocation. The simulation findings reveal a significant improvement over the well-known particle swarm optimization (PSO) algorithm, with recycling and disposal costs decreasing by 10% to 30%.
Actual and effective organizational dynamic capabilities in the work environment contribute to a number of factors that contribute to the organization's ability to manage its human talents. Thus, the study sought to identify the level of contribution of organizational dynamic capabilities to human talent management based on their dimensions in the investigated organization by determining the level of relationship and impact between these variables. The presidency of Mosul University was chosen as a field for the current study, and data were collected by adopting the questionnaire form as the main tool for the study. The study used a deliberate sample of (42) administrative leaders in the investigated organization and adopte
... Show MoreThe recognition of the dynamic organizational capabilities in their actual and influential extent in the work environment achieves a set of positive data that can fall under the addition axes, particularly with regard to the organization's ability to manage human talents in them, so the researchers sought to identify the level of contribution of dynamic organizational capabilities in the management of human talents in terms of Keep them away in the research organization by indicating the level of relationship and impact between them. The presidency of Mosul University was chosen as a field for the current study, and data were collected by adopting the questionnaire form as the main tool for the study. The study used a deliberate
... Show MoreMedical images play a crucial role in the classification of various diseases and conditions. One of the imaging modalities is X-rays which provide valuable visual information that helps in the identification and characterization of various medical conditions. Chest radiograph (CXR) images have long been used to examine and monitor numerous lung disorders, such as tuberculosis, pneumonia, atelectasis, and hernia. COVID-19 detection can be accomplished using CXR images as well. COVID-19, a virus that causes infections in the lungs and the airways of the upper respiratory tract, was first discovered in 2019 in Wuhan Province, China, and has since been thought to cause substantial airway damage, badly impacting the lungs of affected persons.
... Show MorePurpose: The research aims to determine the relationship between E-Learning and Total Quality Management (TQM) in Educational institutions in Nineveh Governorates.
Methodology / Design: The researchers distributed (30) questionnaires to employees (teachers and administrators) of Nineveh Governorate education who represent the community of the research sample, as they were analyzed using the SPSS V.20
The importance of research: The importance of the research in the fact that it focuses on one of the educational methods represented in integrating the traditional method and relying on modern technologies using computers and the Internet in the field of education to improve the reali
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreThe emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreThermomechanical analysis (TMA) and differential scanning calorimetry (DSC) are used to investigate the effect of molding and annealing of polyester on the behavior of thermal expansion and crystallization since these factors play role in the reprocessing or recycling of the polymer. The dynamic mode of the TMA provides enhanced characterization information about the polyester since it separates the transitions into reversible and irreversible signals, and also reveals the progress of the amorphous regions as the polyester loses strength with the increasing temperature approaching melting. Slow cooling after annealing brings crystallization that may be attributed to molecular chain straightening due to orientation.
In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
A novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)