Solar tracking systems used are to increase the efficiency of the solar cells have attracted the attention of researchers recently due to the fact that the attention has been directed to the renewable energy sources. Solar tracking systems are of two types, Maximum Power Point Tracking (MPPT) and sun path tracking. Both types are studied briefly in this paper and a simple low cost sun path tracking system is designed using simple commercially available component. Measurements have been made for comparison between fixed and tracking system. The results have shown that the trackin
In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show MoreThe numerical simulation for the low frequency waves in dusty plasma has been studied. The studying was done by taking two special cases depending on the direction of the propagation of the wave:First, when the propagation is parallel to the magnetic field K//B,this mode is called acoustic mode.Second,when K B this mode is called cyclotron mode.In addition, every one of the two modes divided into two modes depending on the range of the frequency.The Coulomb coupling parameter was studied, with temperature T,density of the dust particles Nd ,and the charge of the particle Qd.The low frequency electrostatic waves in dusty grains were studied. Also, the properties of ion-acoustic waves and ion-cyclotron waves are shown to modify even through
... Show MoreThis study has been undertaken to postulate the mechanism of impact test at low velocities. Thin-walled tubes of 100Cr6 were deformed under axial compression. In the present work there are seven velocities (4.429,4.652,5.240,5.600,5.942,6.264, 6.569) m\sec were applied to show how they effect the load, change in length, also the kinetic energy. However, the comparison between the obtained results and the other studies (Alexandar[3] , Abramowicz[4], Ayad[5]) was made the present work and Ayad data show good agreement. Load, change in length, kinetic energy were determined to understand the impact test.
A prepared PMMA/Anthracene film of thickness 70μm was irradiated under reduced pressure ~10-3 to 60Coγ-ray dose of (0.1mrad-10krad) range. The optical properties of the irradiated films were evaluated spectrophotometrically. The absorption spectrum showed induced absorption changes in the 200-400nm range. At 359nm, where there is a decrease in radiation-induced absorption, the optical density as a function of absorbed dose is linear from 10mrad-10Krad.It can therefore, be used as radiation dosimeter for gamma ray in the range 10mrd-10krad
In Incremental sheet metal forming process, one important step is to produce tool path, an
accurate tool path is one of the main challenge of incremental sheet metal forming
process. Various factors should be considered prior to generation of the tool path i.e.
mechanical properties of sheet metal, the holding mechanism, tool speed, feed rate and
tool size. In this work investigation studies have been carried out to find the different tool
path strategies to control the twist effect in the final product manufactured by single point
incremental sheet metal forming (SPIF), an adaptive tool path strategy was proposed and
examined for several Aluminum conical models. The comparison of the proposed tool path with t