The reaction of methyldopa with o-vanillin in refluxing ethanol afforded Schiff base and characterized through physical analysis with a number of spectra also the study of biological activity. The geometry of the Schiff base was identified through using (C.H.N) analysis, Mass, 1H-NMR, FT-IR, UV-Vis spectroscopy. Metal complexes of Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ with Schiff base have been prepared in the molar ratio 2:1 (Metal:L), (L = Schiff base ligand) except Hg2+ at molar ratio 1:1 (Hg:L). The prepared complexes were characterized by using Mass, FT-IR and UV-Vis spectral studies, on other than magnetic properties and flame atomic absorption, conductivity measurements. According to the results a dinuclear octahedral geometry has been suggested for Cr3+, Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ complexes, dinuclear tetrahedral for Cd2+ and mononuclear tetrahedral for Hg2+ complex. This work highlights the relevance of metal complexation strategy to stabilize the ligands and improve their bioactivity. Schiff base complexes have been screen for their antibacterial activity against Gram negative and positive bacteria and antifungal activity showing promising antibacterial and biological activity.
Organic permeable‐base transistors (OPBTs) show potential for high‐speed, flexible electronics. Scaling laws of OPBTs are discussed and it is shown that OPBT performance can be increased by reducing their effective device area. Comparing the performance of optimized OPBTs with state‐of‐the‐art organic field‐effect transistors (OFETs), it is shown that OPBTs have a higher potential for an increased transit frequency. Not only do OPBTs reach higher transconductance values without the need for sophisticated structuring techniques, but they are also less sensitive to parasitic contact resistances. With the help of a 2D numerical model, the reduced contact resistances of OPBTs are explained by a homogeneous injection of current acros
... Show MoreThe new Hexadentate complexes type [M(H3L3)]K were prepared from the condensation reaction of Diphenylmonoxime and KOH with (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Hg(II)) in methanol with 3:1 ligand : metal ratio to give a series of new complexes of the general formula [M(H3L3)]K (where: M(II) = Mn ,Co ,N ,Cu ,Zn and Hg).All compounds have been Characterized by spectroscopic methods [I.R, U.v-Vis, atomic absorption and microanalysis (C.H.N) along with conductivity measurements. The stability constant K and Gibbs free energy ∆G were calculated for [Co (H3L3)] K, [Ni (H3L3)] K and [Cu (H3L3)] K and complexes using spectrophotometer method. The obtained values indicate that these complexes stable in their solution. From the above data
... Show MoreIntroduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were dete
... Show MoreThe preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
SnS has been widely used in photoelectric devices due to its special band gap of 1.2-1.5 eV. Here, we reported on the fabrication of SnS nanosheets and the effect of synthesis condition together with heat treatment on its physical properties. The obtained band gap of the SnS nanosheets is in the rage of 1.37-1.41 eV. It was found that the photo-current density of a thin film comprised of SnS nanosheets could be enhanced significantly by annealing treatment. The maximum photo-current density of the stack structure of FTO/SnS/CdS/Pt was high as 389.5 mu A cm(-2), rendering its potential application in high efficiency solar hydrogen production.
A potentiostatic study of the behaviour of Inconel (600) in molar sulphuric acid has been carried out over the temperature range 293-313 K. Values have been established for the potentials and current densities of the corrosion, active-passive transition, passivity and transpassive states. For corrosion, the current density (ic) and potential (Ec) have been determined from well-defined Tafel lines. The potential and current density prior to the commencement of passivity have been obtained corresponding respectively to the critical potential (Ecr( and to the current density (icr) for the active-passive transition state. The passive range was defined by the respective potentials and current densities for passive film formation and dissolutio
... Show MoreIn this work a novel drug delivery system through modification of poly acrylic acid with Methionine as a spacer between the poly acrylic acid which was converted to its acyl chloride and reacted with Methionine as spacer unit which has been reacted with Ampicillin drug. In vitro drug release study had been conducted successfully in basic medium in pH 7.4 and acidic medium in pH 1.1 at 37?. Due to many problems associated with drug release and, this modification could decrease the side effect of drug. The prepared prodrug polymer was characterized by spectra method [FTIR and 1H?NMR]. Physical properties and intrinsic viscosity of drug polymer were determined. The good results were obtained in the presence of spacer unit with compar
... Show MoreArtemisia is a perennial wild shrub with large branches and compound leaves. Artemisia contains about 400 types, and its medical importance is due to the presence of many active substances and compounds such as volatile oils, alkaloids and flavonoids, glycosides, saponins, tannins, and coumarins. This study was designed to study the effect of the aqueous extract of the fruit of the Artemisia plant on the organs of the body, as well as to know its ability to activate the hepatic enzyme alanine transaminase (ALT/GPT). The fruit of this shrub was extracted using the measurement technique gas chromatography-mass spectrometry (GC/MASS) and organic solvent hexane and ethyl acetate in one to one ratio. It contained 21 compounds, a high percentage
... Show MoreThe study of the distribution of major oxides and heavy metals in some plants collecting and analyzing eighteen plant samples of vegetables including carrot, onion, eggplant, cucumber, and okra obtained from Abu Ghraib land located about 20 km west of Baghdad, Iraq. Eighteen plant samples of vegetables,.Heavy metals can have a severe impact if released into the environment, even in trace quantities. These can enter the food chain from aquatic and agricultural ecosystems and indirectly threaten human health.. Trace elements and oxides of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Se, Th, U, V, and Zn were measured in plant samples using an X-Ray Fluorescence Instrument (XRF). TEs analyses of vegetables were performed in the Iraqi German Lab
... Show More