The preparation of the phenanthridine derivative compound was achieved by adopting an efficient one-pot synthetic approach. The condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 mole ratio resulted in the formation of the title compound. Analytical and spectroscopic techniques were used to confirm the nature of the new compound. A mechanism for the formation of the phenanthridine moiety that is based on three steps has been suggested
Solvent- free thermal heating, one-pot condensation of acetophenone, ethyl cyanoacetate or malononitrle and substituted Aromatic aldehyde, ammonium acetate give, 2oxo-3-cyano-4-substituted Aryl-6-phenyl pyridine [I]a-h , or 2-amino-3-cyano-4-substituted Aryl-6-phenyl pyridine derivatives[II]a-f , respectively. Treatment of compounds 2-oxo-3-cyano-4-substituted Aryl-6-phenyl pyridine with phosphorous penta sulphide (P2S5), give 2-thioxo-3-cyano-4-substituted Aryl-6-phenyl pyridine derivatives[III]a-c . All prepared compounds
... Show MoreA range of macrocyclic dinuclear metal (II) dithiocarbamate-based complexes are reported. The preparation of complexes was accomplished from either mixing of the prepared ligand with a metal ion or through a template one-pot reaction. The preparation of the bisamine precursor was achieved through several synthetic steps. The free ligand; potassium 2,2'-(biphenyl-4,4'-diylbis(azanediyl))bis(1-chloro-2-oxoethane-2,1diyl)bis(cyclohexylcarbamodithioate) (L) was yielded from the addition of CS2 to a bis-amine precursor in KOH medium.A variety of analytical and physical methods were implemented to characterise ligand and its complexes. The analyses were based on spectroscopic techniques (FTIR, UV-Vis, mass spectroscopy and 1H, 13C-NMR sp
... Show MoreNew Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N,N'E,N,N'E)-N,N'-(cyclohexane-1,3-diylidene)bis(4- fluoro-3-
... Show MoreNew Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N, N'E, N, N'E)-N, N'-(cyclohexane-1,3-diylidene)bis(4- fluor
... Show MoreThe new polydentate Schiff-base oxime (1E,1`E)-2hydroxy-3-((E)-(2-((E)-2hydrxy3-((E)-(hydroxyimino)methyl)-5-methylbenzyldeneamino)ethylimino)methyl)-5methylbenzaldehyde oxime H4L and its binuclear metal complexes with Mn(II), Fe(II), Co(II) and Cu(II) are reported. The reaction of 2,6 diformyl–4–methyl phenol with hydroxyl amine hydrochloride in mole ratios of 1:1 gave the precursor (E)-2-hydroxy-3((hydroxyimino)methyl)-5-methylbenzaldehyde. Condensation reaction of precursor with ethylenediamine in mole ratios of 2:1 gave the new N4O2 Schiff-base oxime ligand H4L. Upon complex formation, the ligand behaves as a tribasic hexadantate species. The mode of bonding and overall geometry of the complexes were determi
... Show MoreNew isatinic hydrazone Schiff-base ligands, namely furan-2-carboxylic acid (2-oxo-1,2-dihydro-indol- 3-ylidene)-hydrazide (L1), thiophene-2-carboxylic acid (2- oxo-1,2-dihydro-indol-3-ylidene)-hydrazide (L2) and 2-(pyridine-2-yl-hydrazono)-1,2-dihydro-indol-3-one) (L3) are reported. The ligands were prepared by the condensation of furan-2-carboxylic acid hydrazide (L1), thiophene- 2-carboxylic acid hydrazide (L2), and 2-hydrazino pyridine (L3) with isatine. Monomeric complexes were prepared from the reaction of the corresponding metal chloride with the ligands. The ligands and their nine new complexes of the general formulae [M(Ln)2]Cl2 [where M = Co(II), Zn(II) and Cd(II); n = L1, L2 and L3] were characterised by spectroscopic methods (FTI
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
Antimony selenide substituted with Sb0.4Se0.6 and doped with zinc at three doping ratios (x=0, 0.01 and 0.03) was prepared via the solid state reaction method. The three prepared compositions were reacted thermally at 400 °C for 3 h. The structure of specimens was characterised via X-ray powder diffractometer to obtain the type of crystalline structure and lattice parameters of the prepared specimens, which showed a polycrystalline, orthorhombic structure. Optical characterisation was then achieved via UV-visible spectroscopy to exhibit the transmittance and reflectance spectra and estimate the band gap values of the prepared compositions. The samples showed high abs
... Show MoreBimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –
... Show More