Preferred Language
Articles
/
vRYHzYsBVTCNdQwCFN_D
Schiff base complexes of some drug substances (Review)
...Show More Authors

Schiff bases (SBs) represent multipurpose ligands that can be prepared from the concentration of prime amines with carbonyl clusters. Creation of SB transition metal compounds via as ligands has opportunity of attaining coordination complexes of abnormal arrangement and stability. These transition metal compounds have extraordinary attention as a consequence of their dynamic portion in metalloenzymes and as biomimetic prototypical complexes as a result of their proximity to usual enzymes and proteins. These complexes are imperative in medicinal disciplines owing to their widespread range of biological actions. They mostly exhibit organic actions involving antifungal, antibacterial, antitumor, antidiabetic, herbicidal, antiproliferative, anticancer, and anti-inflammatory actions. The organic action of transition metal compounds resulting from the Schiff base ligands was extensively investigated. This paper reviews the scope, significance, and antimicrobial actions of Schiff base metal compounds.

Publication Date
Sat Sep 27 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of adding single walled carbon nanotube with different concentrations on mechanical properties of heat cure acrylic denture base material
...Show More Authors

Background: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 15 2024
Journal Name
Journal Of Baghdad College Of Dentistry
Assessment of the correlation between the tensile and diametrical compression strengths of 3D-printed denture base resin reinforced with ZrO2 nanoparticles
...Show More Authors

Background: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Dental Hypotheses
Evaluation of Impact, Tensile, and Flexural Strength of Natural Wool Fiber Reinforced Polymethyl Methacrylate Denture Base Material: An In Vitro Study
...Show More Authors

Introduction: This study was carried out to assess the effect of natural wool fiber addition on the impact, tensile, and flexural strengths of the heat-cured acrylic denture base material. Methods: Short wool fibers with and without chemical surface treatment were added to polymethyl methacrylate (PMMA) at a percentage of 0.25% by weight. A total of 90 acrylic specimens were prepared and divided into three groups according to the tests performed. Impact strength, tensile strength, and flexural strength tests were evaluated. The statistical analysis of the results data was performed using the one-way analysis of variance (ANOVA) test and Tukey’s post hoc test

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jun 04 2017
Journal Name
Baghdad Science Journal
Synthesis, Characterization and Biological Activity of Schiff Bases Chelates with Mn(II),Co(II),Ni (II),Cu(II) and Hg(II)
...Show More Authors

In this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.

Scopus (17)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 04 2017
Journal Name
Baghdad Science Journal
Synthesis, Characterization and Biological Activity of Schiff Bases Chelates with Mn(II),Co(II),Ni (II),Cu(II) and Hg(II)
...Show More Authors

In this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.

View Publication Preview PDF
Scopus (17)
Crossref (2)
Scopus Crossref
Publication Date
Fri Aug 18 2023
Journal Name
Pharmacia
Synthesis, characterization, and antimicrobial evaluation of new Schiff bases derived from vanillic acid conjugated to heterocyclic 4H-1,2,4-triazole-3-thiol
...Show More Authors

A multistep synthesis was established for the preparation of a new vanillic acid-1, 2, 4-1triazole-3-thiol conjugate (4). Finally, several aromatized aldehydes reacted with compound (4) to produce Schiff bases derivatives (5–11). The purpose of this research is to prepare new vanillic acid derivatives with 1, 2, 4-triazole-3-thiol heterocyclic ring structures and to evaluate their antimicrobial activity in a preliminary assessment. Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H-NMR) were used to verify the structures of the newly synthesized compounds. all the final synthesized compounds (

... Show More
View Publication
Scopus (10)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Jun 13 2021
Journal Name
Molecular Crystals And Liquid Crystals
Liquid crystal behavior of Ag(I) complexes based on a series of mesogenic 1,3,4-thiadiazole ligands
...Show More Authors

View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2008
Journal Name
Baghdad Science Journal
Studying of the complexes product of the nerve agent Soman with the Butyrylcholinesterase and Acetylcholinesterase Enzymes
...Show More Authors

Cholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase (AChE) involved in the hydrolysis of the neurotransimitter acetylcholine, and butyrylcholinesterase (BChE) of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge. Human BChE has attracted attention because it can hydrolyze toxic esters and nerve agents. Here we analyze the complexes of cholinesterase with soman by describing the 3D geometry of the complex, the active site, the changes happened through the inhibition and provide a description for the mechanism of inhibition. Soman undergoes degradation in the active site of the AChE and B

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Baghdad Science Journal
Studies on Surface Morphology and Electrical Conductivity of PS Thin Films in Presence of Divalent Complexes
...Show More Authors

       Optical properties and surface morphology of pure and doped Polystyrene films with different divalent metals of Zn, Cu and Sn and one concentration percentage have been studied. Measurements of UV-Vis spectrophotometer and AFM spectroscopy were determined. The absorbance, transmittance and reflectance spectrums were used to study different optical parameters such as absorption coefficient, refractive index, extinction coefficient and energy gap in the wavelengths rang 200-800nm. These parameters have increased in the presence of the metals. The change in the calculated values of energy gaps with doping metals content has been investigated in terms of PS matrix structural modification. The value of opt

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Mar 09 2008
Journal Name
Um-salama Science Journal
Studying of the complexes product of the nerve agent Soman with the Butyrylcholinesterase and Acetylcholinesterase Enzymes
...Show More Authors

Cholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase (AChE) involved in the hydrolysis of the neurotransimitter acetylcholine, and butyrylcholinesterase (BChE) of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge. Human BChE has attracted attention because it can hydrolyze toxic esters and nerve agents. Here we analyze the complexes of cholinesterase with soman by describing the 3D geometry of the complex, the active site, the changes happened through the inhibition and provide a description for the mechanism of inhibition. Soman undergoes degradation in the active site of the AChE and BC

... Show More