Preferred Language
Articles
/
vBajtIcBVTCNdQwCIlxd
A semi-analytical iterative method for solving nonlinear thin film flow problems
...Show More Authors

Crossref
View Publication
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Phase Fitted And Amplification Fitted Of Runge-Kutta-Fehlberg Method Of Order 4(5) For Solving Oscillatory Problems
...Show More Authors

In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
Cubic Trigonometric Spline for Solving Nonlinear Volterra Integral Equations
...Show More Authors

In this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Bn Al-haitham Journal For Pure And Applied Sciences
Analytical Solutions to Investigate Fractional Newell-Whitehead Nonlinear Equationusing SumuduTransform Decomposition Method
...Show More Authors

Some nonlinear differential equations with fractional order are evaluated using a novel approach, the Sumudu and Adomian Decomposition Technique (STADM). To get the results of the given model, the Sumudu transformation and iterative technique are employed. The suggested method has an advantage over alternative strategies in that it does not require additional resources or calculations. This approach works well, is easy to use, and yields good results. Besides, the solution graphs are plotted using MATLAB software. Also, the true solution of the fractional Newell-Whitehead equation is shown together with the approximate solutions of STADM. The results showed our approach is a great, reliable, and easy method to deal with specific problems in

... Show More
Publication Date
Sun Aug 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Novel Heuristic Approach for Solving Multi-objective Scheduling Problems
...Show More Authors

    In this paper, we studied the scheduling of  jobs on a single machine.  Each of n jobs is to be processed without interruption and becomes available for processing at time zero. The objective is to find a processing order of the jobs, minimizing the sum of maximum earliness and maximum tardiness. This problem is to minimize the earliness and tardiness values, so this model is equivalent to the just-in-time production system. Our lower bound depended on the decomposition of the problem into two subprograms. We presented a novel heuristic approach to find a near-optimal solution for the problem. This approach depends on finding efficient solutions for two problems. The first problem is minimizing total completi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
International Journal Of Mechanical Engineering And Robotics Research
Adaptive Approximation-Based Feedback Linearization Control for a Nonlinear Smart Thin Plate
...Show More Authors

This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Analytical study of high absorption region of the absorption edge of a-Si:H using nonlinear regression method
...Show More Authors

This research is concerned with the re-analysis of optical data (the imaginary part of the dielectric function as a function of photon energy E) of a-Si:H films prepared by Jackson et al. and Ferlauto et al. through using nonlinear regression fitting we estimated the optical energy gap and the deviation from the Tauc model by considering the parameter of energy photon-dependence of the momentum matrix element of the p as a free parameter by assuming that density of states distribution to be a square root function. It is observed for films prepared by Jackson et al. that the value of the parameter p for the photon energy range is is close to the value assumed by the Cody model and the optical gap energy is which is also close to the value

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Partial Differential Equations In Applied Mathematics
A hybrid technique for solving fractional delay variational problems by the shifted Legendre polynomials
...Show More Authors

This study presents a practical method for solving fractional order delay variational problems. The fractional derivative is given in the Caputo sense. The suggested approach is based on the Laplace transform and the shifted Legendre polynomials by approximating the candidate function by the shifted Legendre series with unknown coefficients yet to be determined. The proposed method converts the fractional order delay variational problem into a set of (n + 1) algebraic equations, where the solution to the resultant equation provides us the unknown coefficients of the terminated series that have been utilized to approximate the solution to the considered variational problem. Illustrative examples are given to show that the recommended appro

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using a New General Complex Integral Transform for Solving Population Growth and Decay Problems
...Show More Authors

The Population growth and decay issues are one of the most pressing issues in many sectors of study. These issues can be found in physics, chemistry, social science, biology, and zoology, among other subjects.

We introduced the solution for these problems in this paper by using the SEJI (Sadiq- Emad- Jinan) integral transform, which has some mathematical properties that we use in our solutions. We also presented the SEJI transform for some functions, followed by the inverse of the SEJI integral transform for these functions. After that, we demonstrate how to use the SEJI transform to tackle population growth and decay problems by presenting two applications that demonstrate how to use this transform to obtain solutions.

Fin

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
solving linear fractional programming problems (LFP) by Using denominator function restriction method and compare it with linear transformations method
...Show More Authors

 

Abstract

The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.

the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Volterra Runge- Kutta Methods for Solving Nonlinear Volterra Integral Equations
...Show More Authors

In this paper Volterra Runge-Kutta methods which include: method of order two and four will be applied to general nonlinear Volterra integral equations of the second kind. Moreover we study the convergent of the algorithms of Volterra Runge-Kutta methods. Finally, programs for each method are written in MATLAB language and a comparison between the two types has been made depending on the least square errors.

View Publication Preview PDF
Crossref