Different cooking conditions were examined for aluminum content in food cooked while wrapped with aluminum foil. The influence of each anticipated factor (the acidity of the cooking medium, type of acids normally used in cuisines namely acetic and tartaric acids, various cooking temperatures, influence of the presence of sodium chloride salt, the effect of cooking oil, and the length of time of cooking) was studied thoroughly as a function of aluminum degraded out of the aluminum foils to the medium. The experimental samples were digested with nitric acid upon fulfillment of examining each factor separately before quantifying aluminum with the sensitive technique of atomic absorption spectroscopy. The outcomes of the study have shown that the increment in the acidity and the heat of the cooking medium have exhibited a very noticeable effect on the Aluminum content leaked out of the aluminum foil. Nevertheless, the cooking time, the presence of the salt of sodium chloride, and the oil medium compared to the aqueous have exhibited a positive influence by increasing the aluminum leakage out of the foil into the solution.
The extraction of iron from aqueous chloride media in presence of aluminum was studied at different kinds of extractants(cyclohexanone, tributyl phosphate, diethyl ketone), different values of normality (pH of the feed solution), agitation time, agitation speed, operating temperature, phase ratio (O/A), iron concentration in the feed, and extractant concentration]. The stripping of iron from organic solutions was also studied at different values of normality (pH of the strip solution) and phase ratio (A/O). Atomic absorption spectrophotometer was used to measure the concentration of iron and aluminum in the aqueous phase throughout the experiments.The best values of extraction coefficient and stripping coefficient are obtained under the
... Show MoreIn this study, carbon nanotubes were prepared using a pure chemical method modified similar to the Hummers method with simple changes in the work steps. The carbon nanotubes were then coated and reduced on copper and aluminum metals using the electrodeposition method (EDP) for corrosion protection application in seawater medium (NaCl 3.5%) at four different temperatures: 20, 30, 40, and 50 °C, which were studied using three electrode potentiostats. All corrosion measurements, thermodynamics, and kinetics parameters were nominated from Tafel plots. The films deposited by the carbon nanotubes were examined by the SEM technique, and this technique showed the formation of carbon nanotubes.
This Research aim to identify the factors affecting the strategic implementation of sewage projects and to seek to activate the real follow-up of projects to identify the factors that accompany their implementation, The study included a sample of the projects of the investment plan implemented for the Directorate General of sewage in the governorates of Iraq, which was completed during the six years period (2010-2016). The sample of the research was four projects: The project of implementation and processing of the treatment plant and the lifting station and the conveyor line for the project of IMARA/The third stage/Al-Sanaf marshland , The project of the processing and implementation of the treatment plant with the
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreSlag of aluminum is a residue which results during the melting process of primary and secondary aluminum production. Salt slag of aluminum is hazardous solid waste according to the European Catalogue for Hazardous Wastes. Hence, recovery of aluminum not only saves the environment, but also has advantages of financial and economic returns. In this research, aluminum was recovered and purified from the industrial wastes generated as waste from both of State Company for Electrical and Electronic Industries (Baghdad/AlWaziriya) and General Company for Mechanical Industries (Babylon/-Al-Escandria). It was found that these wastes contain tiny proportions of other elements such as iron, copper, nickel, titanium, lead, and potassium. Wastes were
... Show MoreThis paper aims to explain the effect of the taxes policy including direct & indirect taxes on supporting the domestic Investment in Iraq. This could help the official planners for drawing the future policies that help provoking (istumlating) the domestic investment in Iraq the quantitative analysis approach was adopted using regression model. The results showed the significance of the effects of both direct & indirect taxes policies on domestic as a simple correlation coefficient ( r ) of ( 0.6 ) , ( 0.64 ) respectively.
Abstract
Social media has thrived recently and public organizations at Thi-Qar governorate across different levels are experimenting with launching government social media (GSM) to facilitating two-way interactions between the government and its citizens. Both scholars and practitioners are focusing on understanding the key success factors related to the create of GSM. This study aimed to identify the key success factors by exploring the formation mechanism of individuals’ continuous usage intention. Through the theoretical perspective of the uses and gratifications theory. We identify the gratification factors that stimulate users’ continuance intention toward GSM. Furthermore, we draw upon the stimulus–organism–
... Show MoreIn this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al thin films with different doping ratios ( 1, 2, 3 ) % , which were prepared by thermal evaporation technique under vacuum , with thickness ( 450 ± 20 ) nm deposited on glass substrates at room temperature ( 300 ) K , Structural measurements by ( XRD) techniques demonstrated that all samples prepared have polycrystalline structure with tetragonal structure and a preferred orientation [ 201 ] the &n
... Show MoreDoppler broadening of the 511 keV positron annihilation ??? ? was used to estimate the concentration of defects ?? different deformation levels of pure alnminum samples. These samples were compressed at room temperature to 15, 22, 28, 38,40, and 75 % thickness reduction. The two-state ^sitron-trapping model has been employed. 'I he s and w lineshape parameters were measured using high-resolution gamma spectrometer with high pure germanium detector of 2.1 keV resolution at 1.33 MeV of 60Co. The change of defects concentration (Co) with the deformation level (e) is found to obey an empirical formula of the form Cd - A £ B where A and ? are positive constants that depend mainly on the deformation procedure and the temperature at which the def
... Show MoreThis paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it
... Show More