The ground state proton, neutron, and matter density distributions and corresponding root-mean-square (rms) of P19PC exotic nucleus are studied in terms of two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO) potential are used with two different oscillator parameters bRcoreR and bRhaloR. According to this model, the core nucleons of P18PC nucleus are assumed to move in the model space of spsdpf. The shell model calculations are carried out for core nucleons with w)20(+ truncations using the realistic WBPinteraction. The outer (halo) neutron in P19PC is assumed to move in the pure 2sR1/2R-orbit. The halo structure in P19PC is confirmed with 2sR1/2R-dominant configuration.Elastic electron scattering form factor of P19PC nucleus is also investigated by meansof the Plane Wave Born approximation. The effect of the long tail behavior (foundin the calculated matter density distribution) on the elastic form factor of P19PC isstudied. The calculated matter densities and form factors of stable P13PC and unstableP19PC are compared. It is found that the difference between the nucleon form factors ofP13PC and P19PC nuclei is attributed to the difference presented in the matter densities ofthese nuclei. Hence the difference in the matter densities of P19PC and P13PC nucleimainly comes from the neutron skin of the core P18PC and from the difference in theneutron density distribution of the last one neutron in both P19PC and P13PC nuclei. It isfound that elastic electron scattering from exotic nuclei can provide predictions forthe near future experiments on the electron-radioactive beam colliders where theeffect of the neutron halo or skin on the charge distributions is planned to be studied.PACS number(s): 25.60.Dz, 21.10.Gv, 27.30.+t, 13.14.Gp.
Markov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem
... Show MoreSingle-photon detection concept is the most crucial factor that determines the performance of quantum key distribution (QKD) systems. In this paper, a simulator with time domain visualizers and configurable parameters using continuous time simulation approach is presented for modeling and investigating the performance of single-photon detectors operating in Gieger mode at the wavelength of 830 nm. The widely used C30921S silicon avalanche photodiode was modeled in terms of avalanche pulse, the effect of experiment conditions such as excess voltage, temperature and average photon number on the photon detection efficiency, dark count rate and afterpulse probability. This work shows a general repeatable modeling process for significant perform
... Show MorePlanning of electrical distribution networks is considered of highest priority at the present time in Iraq, due to the huge increase in electrical demand and expansions imposed on distribution networks as a result of the great and rapid urban development.
Distribution system planning simulates and studies the behavior of electrical distribution networks under different operating conditions. The study provide understanding of the existing system and to prepare a short term development plan or a long term plan used to guide system expansion and future investments needed for improved network performance.
The objective of this research is the planning of Al_Bayaa 11 kV distribution network in Baghdad city bas
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MorePhysical and chemical adsorption analyses were carried out by nitrogen gas using ASTM apparatus at 77 K
and hydrogen gas using volumetric apparatus at room temperature respectively. These analyses were used for
determination the effect of coke deposition and poisoning metal on surface area, pore size distribution and
metal surface area of fresh and spent hydrodesulphurization catalyst Co-Mo\Al2O3 .
Samples of catalyst (fresh and spent) used in this study are taken from AL-Dura refinery.
The results of physical adsorption shows that surface area of spent catalyst reduced to third compare with
fresh catalyst and these catalysts exhibit behavior of type four according to BET classification ,so, the pores
of these sample
Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreFacial recognition has been an active field of imaging science. With the recent progresses in computer vision development, it is extensively applied in various areas, especially in law enforcement and security. Human face is a viable biometric that could be effectively used in both identification and verification. Thus far, regardless of a facial model and relevant metrics employed, its main shortcoming is that it requires a facial image, against which comparison is made. Therefore, closed circuit televisions and a facial database are always needed in an operational system. For the last few decades, unfortunately, we have experienced an emergence of asymmetric warfare, where acts of terrorism are often committed in secluded area with no
... Show MoreIn this study, mesoporous silica (MPS) is made using the sol-gel method from a cheap source (Na2SiO3) using the surfactant hydroxycetyl hydroxyethyl dimonium chloride as a template. The task is the adsorption-based removal of the medication metoprolol (MP) at concentrations between 10 and 50 ppm. Variables such as: contact time, dose of adsorbent, starting concentration of adsorbate, and adsorption temperature were studied which show the equilibrium time and adsorbent dose are 40 min and 0.05 g respectively. The Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models were fitted to the data obtained from the experiments. Comparing the outcomes showed that, of the four investigated isotherm models, the Freundlich equation m
... Show MoreThe present study aims to evaluate the biosorption of reactive orange dye by using garden grass. Experiments were carried out in a batch reactor to obtain equilibrium and thermodynamic data. Experimental parameters affecting the biosorption process such as pH, shaking time, initial dye concentrations, and temperature were thoroughly examined. The optimum pH for removal was found to be 4. Fourier transform infrared spectroscopy analysis indicated that the electronegative groups on the surface of garden grass were the major groups responsible for the biosorption process. Four sorption isotherm models were employed to analyze the experimental data of which Temkin and Pyzhey model was found to be most suitable one. The maxim
... Show More