هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة لن يكون صفرا أبدا أو أن يكون له قيمة عقدية بسبب اختيارالعقد المحددة لمتغيري النواة الوحيدين. مع متعددات حدود برنولي من الدرجة 4 و 8 كمثال على ذلك، يوفر النهج الحالي حلا قريبا جدا من الحل الدقيق في أمثلة الاختبار. بينما. يثبت الحجم المتواضع جدا للأخطاء في أمثلة الاختبار فعالية الاستراتيجية الحالية. أيضا ، فإن السهولة التي يمكن بها تنفيذ برنامج الكمبيوتر تجعل هذه التقنية فعالة للغاية. هدف آخر هو تحديد كفاءة الطريقة المقترحة من خلال مقارنتها بأساليب مختلفة. يظهر أن الحل التقريبي للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة يتقارب بشدة مع الحل المضبوط للمعادلات باستخدام متعددة حدود برنولي وهو متفوق على تلك الموجودة في الأساليب الأخرى المذكورة. هذا يضمن الأصالة والدقة العالية للطريقة المقترحة. كذلك تمت مناقشة تقارب الحل. تم تنفيذ البرامج باستخدام برنامج ال MATLAB النسخة 2018a .
problems with its unobvious effect on scientific creativity and information. Problem solving is one of main goals of researchers because it develops their right logical thinking methods. The present study aims at measuring logical thinking among female it structures in the university mea swing problem solving among them ,identifying statically differences significance in logical thinking among female instructors in the university according to (Specialization Variable), identifying differences significance in problem Solving among female instructions in the university according to ( Specialization Variable) and identifying the Correlation between logical thinking and problem solving among female instructors in the university. The sample c
... Show MoreIn this paper, we proposed to zoom Volterra equations system Altfazlah linear complementarity of the first type in this approximation were first forming functions notch Baschtdam matrix and then we discussed the approach and stability, to notch functions
Image databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p
In this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.
Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.
The confirming of security and confidentiality of multimedia data is a serious challenge through the growing dependence on digital communication. This paper offers a new image cryptography based on the Chebyshev chaos polynomials map, via employing the randomness characteristic of chaos concept to improve security. The suggested method includes block shuffling, dynamic offset chaos key production, inter-layer XOR, and block 90 degree rotations to disorder the correlations intrinsic in image. The method is aimed for efficiency and scalability, accomplishing complexity order for n-pixels over specific cipher rounds. The experiment outcomes depict great resistant to cryptanalysis attacks, containing statistical, differential and brut
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreResearchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson
... Show More