هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة لن يكون صفرا أبدا أو أن يكون له قيمة عقدية بسبب اختيارالعقد المحددة لمتغيري النواة الوحيدين. مع متعددات حدود برنولي من الدرجة 4 و 8 كمثال على ذلك، يوفر النهج الحالي حلا قريبا جدا من الحل الدقيق في أمثلة الاختبار. بينما. يثبت الحجم المتواضع جدا للأخطاء في أمثلة الاختبار فعالية الاستراتيجية الحالية. أيضا ، فإن السهولة التي يمكن بها تنفيذ برنامج الكمبيوتر تجعل هذه التقنية فعالة للغاية. هدف آخر هو تحديد كفاءة الطريقة المقترحة من خلال مقارنتها بأساليب مختلفة. يظهر أن الحل التقريبي للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة يتقارب بشدة مع الحل المضبوط للمعادلات باستخدام متعددة حدود برنولي وهو متفوق على تلك الموجودة في الأساليب الأخرى المذكورة. هذا يضمن الأصالة والدقة العالية للطريقة المقترحة. كذلك تمت مناقشة تقارب الحل. تم تنفيذ البرامج باستخدام برنامج ال MATLAB النسخة 2018a .
In this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
Based on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.
MCA has gained a reputation for being a very useful statistical method for determining the association between two or more categorical variables and their graphical description. For performance this method, we must calculate the singular vectors through (SVD). Which is an important primary tool that allows user to construct a low-dimensional space to describe the association between the variables categories. As an alternative procedure to use (SVD), we can use the (BMD) method, which involves using orthogonal polynomials to reflect the structure of ordered categorical responses. When the features of BMD are combined with SVD, the (HD) is formed. The aim of study is to use alternative method of (MCA) that is appropriate with order
... Show MoreOrthogonal polynomials and their moments have significant role in image processing and computer vision field. One of the polynomials is discrete Hahn polynomials (DHaPs), which are used for compression, and feature extraction. However, when the moment order becomes high, they suffer from numerical instability. This paper proposes a fast approach for computing the high orders DHaPs. This work takes advantage of the multithread for the calculation of Hahn polynomials coefficients. To take advantage of the available processing capabilities, independent calculations are divided among threads. The research provides a distribution method to achieve a more balanced processing burden among the threads. The proposed methods are tested for va
... Show MoreA new class of higher derivatives for harmonic univalent functions defined by a generalized fractional integral operator inside an open unit disk E is the aim of this paper.