Preferred Language
Articles
/
uxhbF5cBVTCNdQwCUZWH
Bernoulli Polynomials Method for Solving Integral Equations with Singular Kernel
...Show More Authors

هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة لن يكون صفرا أبدا أو أن يكون له قيمة عقدية بسبب اختيارالعقد المحددة لمتغيري النواة الوحيدين. مع متعددات حدود برنولي من الدرجة 4 و 8 كمثال على ذلك، يوفر النهج الحالي حلا قريبا جدا من الحل الدقيق في أمثلة الاختبار. بينما. يثبت الحجم المتواضع جدا للأخطاء في أمثلة الاختبار فعالية الاستراتيجية الحالية. أيضا ، فإن السهولة التي يمكن بها تنفيذ برنامج الكمبيوتر تجعل هذه التقنية فعالة للغاية. هدف آخر هو تحديد كفاءة الطريقة المقترحة من خلال مقارنتها بأساليب مختلفة. يظهر أن الحل التقريبي للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة يتقارب بشدة مع الحل المضبوط للمعادلات باستخدام متعددة حدود برنولي وهو متفوق على تلك الموجودة في الأساليب الأخرى المذكورة. هذا يضمن الأصالة والدقة العالية للطريقة المقترحة. كذلك تمت مناقشة تقارب الحل. تم تنفيذ البرامج باستخدام برنامج ال MATLAB النسخة 2018a .

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication Preview PDF
Crossref
Publication Date
Tue Oct 01 2024
Journal Name
Journal Of Physics: Conference Series
The operational matrices for Elliptic Partial Differential Equations with mixed boundary conditions
...Show More Authors
Abstract<p>The purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (<italic>x<sup>i</sup> </italic>), Legendre, Chebyshev, Bernoulli, Boubaker, and Genocchi polynomials. This study focuses on constructing quick and precise analytic approximations using a simple, elegant, and potent technique based on an orthogonal polynomial representation of the solution as a double power series. Consequently, a linear </p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data
...Show More Authors

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Phase Fitted And Amplification Fitted Of Runge-Kutta-Fehlberg Method Of Order 4(5) For Solving Oscillatory Problems
...Show More Authors

In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Computers &amp; Mathematics With Applications
Analytical and numerical solutions for the nonlinear Burgers and advection–diffusion equations by using a semi-analytical iterative method
...Show More Authors

View Publication
Crossref (24)
Crossref
Publication Date
Fri Jun 23 2023
Journal Name
Journal The College Of Basic Education / Al-mustansiriyah University
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.

View Publication
Crossref (1)
Crossref
Publication Date
Sun Jun 23 2019
Journal Name
Journal Of The College Of Basic Education
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sat Mar 30 2024
Journal Name
Journal Of Kufa For Mathematics And Computer
Approximate Solution of Linear and Nonlinear Partial Differential Equations Using Picard’s Iterative Method
...Show More Authors