Reactive oxygen species (ROS) are produced as a result of biochemical processes that are not in balance with the body's antioxidant defense mechanism. This metabolic dysfunction is referred to the oxidative stress (OS). Metabolic dysfunction-associated diseases are affected by changes in the redox balance. It is now widely recognized that oxidative stress significantly affects diabetes mellitus (DM), particularly type 2 diabetes. The biochemical changes associated with DM could disturb the oxidative milieu, leading to several microvascular complications in diabetic patients. Thus, DM is a perfect disease to explore the harmful consequences of oxidative stress and how to treat it. Oxidative stress triggered by hyperglycemia is an important contributor to the effects of diabetic microvascular diseases. Uncontrolled hyperglycemia carried by deficiencies in insulin secretion or action produces a number of problems, such as peripheral vascular disorders, nephropathy, neuropathy, retinopathy, increased morbidity and/or mortality, as well as the incidence of diabetes mellitus (DM) are rising globally. The development and progression of diabetic problems are strongly correlated with reactive oxygen species and oxidative stress, according to a wide body of research. This review aims to explore various markers of oxidative stress and the role of ROS in the pathogenesis and progression of late diabetic microvascular complications.
The objective of this study was to investigate the drought stress and plant density possibility on water productivity and grain yield of maize (Zea mays L.) (Planting Baghdad 3 synthetic varieties), Field experiment was conducted at Abu Ghraib Research Station (Baghdad) during spring and Autumn seasons of 2016 using a randomized complete block design arranged in split plot with three replications. Three irrigation treatment included: irrigation after depletion 50% of available water (T1), irrigation after depletion 75% of available water (T2) and irrigation after depletion 90% of available water (T3) in the main plots and three plant density which were: 1 seeds hill-1 (D1) giving a uniform plant density of 66666 plants ha-1 , 2 seeds hill1
... Show MoreIn fish, a complex set of mechanisms deal with environmental stresses including hypoxia. In order to probe the hypothesis that hypoxia-induced stress could be manifested in varieties of pathways, a model species, mirror carp (Cyprinus carpio), were chronically exposed to hypoxic condition (dissolved oxygen level: 1.80±0.6mg/l) for 21 days and subsequently allowed to recover under normoxic condition (dissolved oxygen level: 8.2±0.5mg/l) for 7 days. At the end of these exposure periods, an integrated approach was applied to evaluate several endpoints at different levels of biological organisation. These included determination of (i) oxidative damage to DNA in erythrocytes (using modified comet assay), (ii) lipid peroxidation in liver sample
... Show MoreSickle cell disease (SCD) is a hereditary ailment that can cause severe pain and suffering to people who are affected. However, with continued investment in research and treatment options, we can make progress towards improving the lives of those with SCD. Over 40% of patients experience painful vaso-occlusive crises (VOCs), so we must work towards finding solutions and providing support for those living with this condition, These episodes, a hallmark of SCD, significantly contribute to morbidity, mortality, and a diminished quality of life, while also incurring substantial healthcare costs. Chronic pain particularly affects older adolescents and adults with SCD, with over half reporting daily discomfort. Opioid-based analgesics, though sti
... Show MoreSynthetic anti-TB drugs are being used to treat tuberculosis (TB) as they are effective, however, they are accompanied by many side effects. The disease has remained largely uncured till date. The use of plant extracts or phytochemicals along with the anti-TB drugs is a very attractive strategy to make the treatment more effective as phytochemicals have no side-effects, are much less toxic than synthetic anti-TB drugs, are safe to use and most importantly, do not produce resistant strains as opposed to synthetic anti-TB drugs. Approximately 420,000 plant species have been identified globally and among them only a few have been explored for their therapeutic potential. Traditional medicine in different parts of the world has employed crud
... Show MoreCerium (III), Neodymium (III) and Samarium (III) Complexes existent a wide range of implementation that stretch from their play in the medicinal and pharmaceutical area because of their major significant pharmacological characteristic such as antifungal, anti-cancer, anti-bacterial ,anti-human immunodeficiency virus ,antineoplastic, anti-inflammation,inhibition corrosion,in some industrial (polymers, Azo dye).It is likely to open avenuesto research among various disciplines such as physics, electronics, chemistry and materials science by these complexes that contain exquisitely designed organic molecules.This paper reviews the definition, importance and various applications of Cerium (III), Neodymium (III) and Samarium (III) Complexe
... Show MoreCephalexin and its derivatives are commonly utilized in the pharmaceutical and medicinal industry due to their biological and pharmaceutical activities, including anti-microbial, anti-cancer, anti-bacterial, and herbicidal activities as well as possessing high palatability and being useful for skin and joint infections. Interestingly, some organic drugs, including cephalexin, which exhibit toxicological and pharmacological properties, can be administered in forms of metal complexes. Many researchers have synthesized organic ligands derived from cephalexin in forms of Schiff bases and azo compounds which exhibited higher biological and medicinal properties when compared to cephalexin alone. One of the important features that make Schiff base
... Show MoreIn present days, drug resistance is a major emerging problem in the healthcare sector. Novel antibiotics are in considerable need because present effective treatments have repeatedly failed. Antimicrobial peptides are the biologically active secondary metabolites produced by a variety of microorganisms like bacteria, fungi, and algae, which possess surface activity reduction activity along with this they are having antimicrobial, antifungal, and antioxidant antibiofilm activity. Antimicrobial peptides include a wide variety of bioactive compounds such as Bacteriocins, glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. Bioactive peptides derived from various natural sources like bacte
... Show More