The aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreIn this paper, Pentacene based-organic field effect transistors (OFETs) by using different layers (monolayer, bilayer and trilayer) for three different gate insulators (ZrO2, PVA and CYEPL) were studied its current–voltage (I-V) characteristics by using the gradual-channel approximation model. The device exhibits a typical output curve of a field-effect transistor (FET). Source-drain voltage (Vds) was also investigated to study the effects of gate dielectric on electrical performance for OFET. The effect of capacitancesemiconductor in performance OFETs was considered. The values of current and transconductance which calculated using MATLAB simulation. It exhibited a value of current increase with increasing source-drain voltage.
In this paper, Pentacene based-organic field effect transistors (OFETs) by using different layers (monolayer, bilayer and trilayer) for three different gate insulators (ZrO2, PVA and CYEPL) were studied its current–voltage (I-V) characteristics by using the gradual-channel approximation model. The device exhibits a typical output curve of a field-effect transistor (FET). Source-drain voltage (Vds) was also investigated to study the effects of gate dielectric on electrical performance for OFET. The effect of capacitance semiconductor in performance OFETs was considered. The values of current and transconductance which calculated using MATLAB simulation. It exhibited a value of current increase with increasing source-drain voltage.
Metasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreThe aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
Surfaces quality is one of the most specified customer requirements for machine parts. The major indication of surfaces quality on machined parts is surface roughness. The research aim is to study the cutting conditions and their effects on the surface roughness. This paper utilizes regression models to predict surface roughness over the machining time for variety of cutting conditions in turning. In the experimental part for turning, different types of materials (Aluminum alloy, Copper alloy, and Gray cast iron) were considered with different cutting speed ( ) and feed rate ( ). A mathematical Model depending on statistical-mathematical method between surface roughness (Rz ) and cutting condition ( , ) were derived, for the three materials
... Show MoreHydrochloric acid (HCl) is a substance that is frequently utilized in industrial operations for important tasks such as chemical cleaning and pickling metallic surfaces.Therefore, the corrosion inhibition ability of three newly synthesized quinazoline derivatives namely, 3-allyl-2-(propylthio) quinazolin-4(3H)-one) (APQ), (3-allyl-2-(allylthio) quinazolin-4(3H)-one) (AAQ), (3-allyl- 2-( Prop -2-yn -1-ylthio) Quinazolin - 4 (3H) - one) (AYQ) were theoretically determined and these compounds were characterized using Fourier Transform Infra-Red (FTIR) and 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic. A series of quantum chemical properties of these derivatives: EHOMO, ELUMO, energy gap (ΔE),dipole moment (μ), hardness (η), soft
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes