KE Sharquie, AA Noaimi, HA Al-Mudaris, Journal of Cosmetics, Dermatological Sciences and Applications, 2013 - Cited by 4
The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the proposed LAD-Atan estimator
... Show MoreThe main purpose of this paper, is to characterize new admissible classes of linear operator in terms of seven-parameter Mittag-Leffler function, and discuss sufficient conditions in order to achieve certain third-order differential subordination and superordination results. In addition, some linked sandwich theorems involving these classes had been obtained.
Sewage pumping stations are considered an important part of any sewerage system. Pumps failure in these stations means that the pumps are unable to work at the design requirement (flow capacity and head) and that may cause sewer overflow and flooding leading to sewer deterioration. In this paper, two main sewage pumping stations in Baghdad city were selected as case studies, Al- Habibia and Al-Ghazali located on Zublin trunk sewer 3000 mm and Baghdad trunk sewer 1200-2100 respectively. This study focused mainly on the operation of main sewage pumping stations and their effect, both directly and indirectly, on changing hydraulic properties, which leads to an increase in the deterioration of sewage pipes. The hydraulic analysis was co
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show MoreA new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show More This paper describes the application of consensus optimization for Wireless Sensor Network (WSN) system. Consensus algorithm is usually conducted within a certain number of iterations for a given graph topology. Nevertheless, the best Number of Iterations (NOI) to reach consensus is varied in accordance with any change in number of nodes or other parameters of . graph topology. As a result, a time consuming trial and error procedure will necessary be applied
to obtain best NOI. The implementation of an intellig ent optimization can effectively help to get the optimal NOI. The performance of the consensus algorithm has considerably been improved by the inclusion of Particle Swarm Optimization (PSO). As a case s
In recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. T
... Show More