Preferred Language
Articles
/
uhgZX5QBVTCNdQwCeRNk
Subsurface Structural Image of Galabat Field, North East of Iraq Using 2D Seismic Data
...Show More Authors

This research had been achieved to identify the image of the subsurface structure representing the Tertiary period in the Galabat Field northeast of Iraq using 2D seismic survey measurements. Synthetic seismograms of the Galabat-3 well were generated in order to identify and pick the reflectors in seismic sections. Structural Images were drawn in the time domain and then converted to the depth domain by using average velocities. Structurally, seismic sections illustrate these reflectors are affected by two reverse faults affected on the Jeribe Formation and the layers below with the increase in the density of the reverse faults in the northern division. The structural maps show Galabat field, which consists of longitudinal Asymmetrical narrow anticline of Fatha and Jeribe formations, where the Southeastern limb is steeper than the Northeastern limb. The seismic interpretation shows that Galabat Field has a positive inverted structure, it is an anticline at the level of the Tertiary Period. The direction of the anticline axis and the major reverses faults are Northwest -Southeast. It is concluded from the study that reverse faults originated due to Zagros tectonism which is widespread in the area are a major conduit that channeled petroleum flow from source to Miocene traps. In addition, these faults were caused by the presence of salt accumulation within the Fatha Formation and led to high variation in the thickness in the crest and limbs of the Galabat structure.

Scopus Crossref
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
GEOMETRIC NONLINEAR TIME DOMAIN SPECTRALMATCHING SEISMIC ANALYSIS OF BASE ISOLATED HIGHRISE BUILDINGS INCLUDING P-DELTA EFFECT
...Show More Authors

Time-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Stability and Seismic Performance of Tall Steel Structures with Hybrid Energy Absorbers Including P-Delta Effect
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Dec 22 2020
Journal Name
Lecture Notes In Civil Engineering
Geometric Nonlinear Synthetic Earthquake Analysis of Base Isolated Tall Steel Buildings Under Site-Specific Seismic Loading
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Green Engineering
Water distribution and interference of wetting front in stratified soil under a continues and an intermittent subsurface drip irrigation
...Show More Authors

Scopus (6)
Scopus
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
Gravity Field Interpretation for Major Fault Depth Detection in a Region Located SW- Qa’im / Iraq
...Show More Authors

This research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-

... Show More
View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Fri Jan 31 2025
Journal Name
Iraqi Geological Journal
1D Geomechanical Modeling to Detect the Deformation in Mishrif Formation at Nasriyah Oil Field, Iraq
...Show More Authors

Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the format

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Estimation Pore and Fracture Pressure Based on Log Data; Case Study: Mishrif Formation/Buzurgan Oilfield at Iraq
...Show More Authors

Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pr

... Show More
Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Estimation Pore and Fracture Pressure Based on Log Data; Case Study: Mishrif Formation/Buzurgan Oilfield at Iraq
...Show More Authors

Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of Manganese Ion Doping on the Size- Strain of SnO2 nanoparticles Using X-Ray Diffraction Data
...Show More Authors

In this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of Manganese Ion Doping on the Size- Strain of SnO2 nanoparticles Using X-Ray Diffraction Data
...Show More Authors

In this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nano

... Show More
View Publication
Crossref (1)
Crossref