Effective decision-making process is the basis for successfully solving any engineering problem. Many decisions taken in the construction projects differ in their nature due to the complex nature of the construction projects. One of the most crucial decisions that might result in numerous issues over the course of a construction project is the selection of the contractor. This study aims to use the ordinal priority approach (OPA) for the contractor selection process in the construction industry. The proposed model involves two computer programs; the first of these will be used to evaluate the decision-makers/experts in the construction projects, while the second will be used to formulate the OPA mathematical model. The experts’ interview was used to identify the criteria of evaluation process of the decision-makers/experts, while Delphi survey with principal component analysis (PCA) was conducted to identify the required selection criteria of the construction projects contractors. The results illustrate that there are 20 criteria for selecting the construction contractor, and 7 criteria for evaluating the decision-makers/experts in the construction projects. Finally, the proposed model has been applied in a real construction project, and showed good results.
Find interested in the harmonization of variables and determinants of supply chain planning needs of the material, leading to the results start effective supply chain management, and end up quickly modify the sizes to suit the demand and turnover in the market. As well as identifying relationships between variables, and type of relationship used by the company with the processors and their feasibility, and indicate the level of interest and willingness to redesign the supply chain Company for Electrical Industries and build an integrated model for supply chain with the MRP system can be applied in the company.
Research depend on quantitative and descriptive method, It
... Show MoreAn aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical
... Show MoreThe application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the
... Show MoreMarket share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThe interest of many companies has become dealing with the tools and methods that reduce the costs as one of the most important factors of successful companies, and became the subject of the attention of many economic units because of the impact on the profits of company, and since the nineties of the last century the researchers and writers gave great attention to this subject, especially in light of the large competition and rapid developments in cost management techniques, as well as the wide and significant change in production methods that have been directed towards achieving customer satisfaction, all this and more driven by economic units in all sectors whether it is service or productivity to find methods that would reduc
... Show More