Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks can also be made with smart devices that connect to the Internet, which can be infected and used as botnets. They use Deep Learning (D.L.) techniques like Convolutional Neural Network (C.N.N.) and variants of Recurrent Neural Networks (R.N.N.), such as Long Short-Term Memory (L.S.T.M.), Bidirectional L.S.T.M., Stacked L.S.T.M., and the Gat G.R.U.. These techniques have been used to detect (DDoS) attacks. The Portmap.csv file from the most recent DDoS dataset, CICDDoS2019, has been used to test D.L. approaches. Before giving the data to the D.L. approaches, the data is cleaned up. The pre-processed dataset is used to train and test the D.L. approaches. In the paper, we show how the D.L. approach works with multiple models and how they compare to each other.
This research presents a method for calculating stress ratio to predict fracture pressure gradient. It also, describes a correlation and list ideas about this correlation. Using the data collected from four wells, which are the deepest in southern Iraqi oil fields (3000 to 6000) m and belonged to four oil fields. These wells are passing through the following formations: Y, Su, G, N, Sa, Al, M, Ad, and B. A correlation method was applied to calculate fracture pressure gradient immediately in terms of both overburden and pore pressure gradient with an accurate results. Based on the results of our previous research , the data were used to calculate and plot the effective stresses. Many equations relating horizontal effective stress and vertica
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreReservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreModerately, advanced national election technologies have improved political systems. As electronic voting (e-voting) systems advance, security threats like impersonation, ballot tampering, and result manipulation increase. These challenges are addressed through a review covering biometric authentication, watermarking, and blockchain technologies, each of which plays a crucial role in improving the security of e-voting systems. More precisely, the biometric authentication is being examined due to its ability in identify the voters and reducing the risks of impersonation. The study also explores the blockchain technology to decentralize the elections, enhance the transparency and ensure the prevention of any unauthorized alteration or
... Show More|
The prevalence of gastrointestinal symptoms of COVID-19 is variable with different types of presentations. Some of them many present with manifestations mimicking surgical emergencies. Yet, the pathophysiology of acute abdomen in the context of COVID-19 remains unclear. We present a case of a previously healthy child who presented with acute appendicitis with multisystemic inflammatory syndrome. We also highlight the necessity of considering the gastrointestinal symptoms of COVID-19 infection in pediatric patients in order to avoid misdiagnosis and further complications. |
Palm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.