The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreAnticyclone of synoptic studies that influence weather and climate of Iraq, The aim of
the study is to clarify the effect variation of repetition of Anticyclone and effect on thermal
characteristic in Iraq were pressure level has been analyzed (1000) millibars and that because
of pressure level is the closet to the earth surface and the clarity of climatic phenomenon
based on a systematic analysis of synoptic seeking maps and observation and (12:00)
according to timing GMT for five climatic stations which is (Mosul, Kirkuk, Baghdad, Rutba,
and Basra) and so far three consecutive climatic cycles which is first climatic cycle for period
(1986-1976). and second climatic cycle for period (1997-1987) and third climatic cy
Impressed current cathodic protection controlled by computer gives the ideal solution to the changes in environmental factors and long term coating degradation. The protection potential distribution achieved and the current demand on the anode can be regulated to protection criteria, to achieve the effective protection for the system.
In this paper, cathodic protection problem of above ground steel storage tank was investigated by an impressed current of cathodic protection with controlled potential of electrical system to manage the variation in soil resistivity. Corrosion controller has been implemented for above ground tank in LabView where tank's bottom potential to soil was manipulated to the desired set poi
... Show MoreRefractory mortar was prepared from the mixing of locally fire clay with different percentage of silica powder (30,40,50,60)wt% by using Pyrometric Cone Equivalent PCE . According to the U.S. Standard ASTM C24, the samples were prepared by using Hand – molding method and dried at temperature 110⁰C and finally firing at different temperature (1000,1100,1200,1300)⁰C according to burning program to study the effect of temperatures for these specimens on the thermal durability .It was shown that the increasing in the percentage of silica content increased the durability of heat specimens, and the best degree of burn was 1300°C.
Human serum albumin (HSA) nanoparticles have been widely used as versatile drug delivery systems for improving the efficiency and pharmaceutical properties of drugs. The present study aimed to design HSA nanoparticle encapsulated with the hydrophobic anticancer pyridine derivative (2-((2-([1,1'-biphenyl]-4-yl)imidazo[1,2-a]pyrimidin-3-yl)methylene)hydrazine-1-carbothioamide (BIPHC)). The synthesis of HSA-BIPHC nanoparticles was achieved using a desolvation process. Atomic force microscopy (AFM) analysis showed the average size of HSA-BIPHC nanoparticles was 80.21 nm. The percentages of entrapment efficacy, loading capacity and production yield were 98.11%, 9.77% and 91.29%, respectively. An In vitro release study revealed that HSA-BIPHC nan
... Show MoreThis research paper studies the use of an environmentally and not expensive method to degrade Orange G dye (OG) from the aqueous solution, where the extract of ficus leaves has been used to fabricate the green bimetallic iron/copper nanoparticles (G-Fe/Cu-NPs). The fabricated G‑Fe/Cu-NPs were characterized utilizing scanning electron microscopy, BET, atomic force microscopy, energy dispersive spectroscopy, Fourier-transform infrared spectroscopy and zeta potential. The rounded and shaped as like spherical nanoparticles were found for G-Fe/Cu‑NPs with the size ranged 32-59 nm and the surface area was 4.452 m2/g. Then the resultant nanoparticles were utilized as a Fenton-like oxidation catalyst. The degradation efficiency of
... Show MoreShell-and-double concentric tube heat exchanger is one of the new designs that enhance the heat transfer process. Entransy dissipation is a recent development that incorporates thermodynamics in the design and optimization of heat exchangers. In this paper the concept of entransy dissipation is related to the shell-and-double concentric tube heat exchanger for the first time, where the experiments were conducted using hot oil with temperature of 80, 100 and 120°C, flow rate of cold water was 0.667, 1, and 1.334 kg/m3 respectively and the temperature of inlet cold water was 20°C. The entransy dissipation rate due to heat transfer and to fluid friction or pressure drop was studied.
The present work presents a new experimental study of the enhancement of turbulent
convection heat transfer inside tubes for combined thermal and hydrodynamic entry length of one
popular “turbulator” (twisted tape with width slightly less than internal tube diameter) inserted for
fire tube boilers. Cylindrical combustion chamber was used to burn (1.6 to 7kg/h) fuel oil #2 to
deliver hot gases with ranges of Reynolds number (10500 to 21700), and (11400 to 24150) for both
empty and inserted tube respectively.A uniform wall temperature technique was used by keeping
approximately constant water temperature difference (25ºC) between inlet and exit cooling water in
parallel flow shell and tube heat exchanger. The test
To observe the effect of media of the internal pressure on the equivalent stress distribution in the tube, an experimental study is done by constructing a testing rig to apply the hydraulic pressure and three dies are manufactured with different bulging configurations (square, cosine, and conical). In the other part, ANSYS APDL is generated to analyze the bulging process with hydraulic and rubber (natural and industrial) media. It was found that when the media is a rubber, the stress is decreased about 9.068% in case of cosine die and 5.4439% in case of conical die and 2.8544% in case of square die. So, it can be concluded that the internal pressure in the rubber media is much better than in hydraulic media. Also, the force needed for fo
... Show MoreThis paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.