Transportation and distribution are the most important elements in the work system for any company, which are of great importance in the success of the chain work. Al-Rabee factory is one of the largest ice cream factories in Iraq and it is considered one of the most productive and diversified factories with products where its products cover most areas of the capital Baghdad, however, it lacks a distribution system based on scientific and mathematical methods to work in the transportation and distribution processes, moreover, these processes need a set of important data that cannot in any way be separated from the reality of fuzziness industrial environment in Iraq, which led to use the fuzzy sets theory to reduce the levels of uncertainty. The decision-maker has several goals that he aspires to accomplish for two stages, so, the decision-maker adopted in his work system on a multi-objective travelling salesman problem. A network of paths for transportation and distribution of the products has been designed based on a multi-objective travelling salesman problem, by building a mathematical model that finds the best paths for each stage, taking into account the goals required by the decision-maker. The results obtained from the use of (Lingo) software showed the importance of these methods in determining the optimal path for the processes of collecting and transporting milk from their collection centers to the Al-Rabee factory as a first stage, as well as transporting the final products and distributing them from the Al-Rabee factory to the shopping centers as a second stage.
Abstract:
The achievement of economic and social welfare for individual is the main target to all policies that adopted by all countries worldwide either were economic, social, political or others. The obtaining of education by individuals and especially the higher education is one of the most important determinates in achieving the wellbeing and lasted economic development. This is because via the higher education new fields can be opened in front of individuals in order to get adequate jobs associated with their scientific specialization. This is allowing educated individuals gain higher income that can reduce the gap of income inequality.
Thus, this paper aims to analysis the n
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
Phase-change materials (PCMs) have a remarkable potential for use as efficient energy storage means. However, their poor response rates during energy storage and retrieval modes require the use of heat transfer enhancers to combat these limitations. This research marks the first attempt to explore the potential of dimple-shaped fins for the enhancement of PCM thermal response in a shell-and-tube casing. Fin arrays with different dimensions and diverse distribution patterns were designed and studied to assess the effect of modifying the fin geometric parameters and distribution patterns in various spatial zones of the physical domain. The results indicate that increasing the number of
Abstract
Most of the industrial organization in the world became suffering from the problem of the pollution of the poisonous chemicals things, this urged to depend on the principle of the responsible production, because it has the positive role by dealing with these chemical things and to safe the health of the society, due to the main goal of this study is to restrict the role responsible production in accomplishing the system of the environmental management through an actual study in the northern gas company in Kirkuk province, the topic has acquired a big importance bacause there were a limited number of studies and res
... Show MoreIncremental Sheet Metal Forming (ISMF) is a modern sheet metal forming technology which offers the possibility of manufacturing 3D complex parts of thin sheet metals using the CNC milling machine. The surface quality is a very important aspect in any manufacturing process. Therefore, this study focuses on the resultant residual stresses by forming parameters, namely; (tool shape, step over, feed rate, and slope angle) using Taguchi method for the products formed by single point incremental forming process (SPIF). For evaluating the surface quality, practical experiments to produce pyramid like shape have been implemented on aluminum sheets (AA1050) for thickness (0.9) mm. Three types of tool shape used in this work, the spherical tool ga
... Show MoreStatistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu
... Show MoreWeed control with chemicals is a challenging process that should be performed in a rational way to reduce their negative impact on the surrounding environment. The growth of artificial intelligence algorithms encourages researchers to develop smart spraying robots that detect and spray weeds and distinguish them from the main crop which leads to sustainable use of these chemicals and achieves some of the sustainable development goals. However, few studies are available to comprehensively compare different versions of YOLO algorithm to detect weed. In this research, seven versions of YOLO algorithms were evaluated for their performance to detect and spray four t
Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show More