Transportation and distribution are the most important elements in the work system for any company, which are of great importance in the success of the chain work. Al-Rabee factory is one of the largest ice cream factories in Iraq and it is considered one of the most productive and diversified factories with products where its products cover most areas of the capital Baghdad, however, it lacks a distribution system based on scientific and mathematical methods to work in the transportation and distribution processes, moreover, these processes need a set of important data that cannot in any way be separated from the reality of fuzziness industrial environment in Iraq, which led to use the fuzzy sets theory to reduce the levels of uncertainty. The decision-maker has several goals that he aspires to accomplish for two stages, so, the decision-maker adopted in his work system on a multi-objective travelling salesman problem. A network of paths for transportation and distribution of the products has been designed based on a multi-objective travelling salesman problem, by building a mathematical model that finds the best paths for each stage, taking into account the goals required by the decision-maker. The results obtained from the use of (Lingo) software showed the importance of these methods in determining the optimal path for the processes of collecting and transporting milk from their collection centers to the Al-Rabee factory as a first stage, as well as transporting the final products and distributing them from the Al-Rabee factory to the shopping centers as a second stage.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreAggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show MoreAims to find out the (Extent of mathematics teachers' appreciation of the mathematical problem `multiple solutions) Research sample consisted of (100) mathematics teachers distributed on the General Directorates of Education in Baghdad (Rusafa 1/2/3) and (Karkh 1/2/ 3) There was two research approach which are: The first - two different answers of students to the same issue where teachers must assess each answer and explain which one the teacher will accept and why? The second - Different solutions of students' to the same issue, including wrong answers , Teachers should correct the answers and give them final grades (0-10). Descriptive and analytical Approch was used in this research methodology And zero hypotheses, which are as f
... Show MoreMedication safety is an important part of the comprehensive patient safety term. Medication safety is gaining more attention as the World Health Organization set the goal of decreasing medication harm by (50%) for the next 5 years when launching the third global challenge. Studying medication safety in the risk groups such as young ages, children are crucial to learn more about the effect of medicines in this risk group since they are not included in the clinical trials. Adverse drug reaction is defined as any harm resulted from the drug itself during medical process journey, while medication errors are any harm resulted from the treatment process rather than the drug or it is the result of the failure in a step of the treatment process
... Show MoreSurface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned above, which is a very
... Show MoreSurface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned
... Show MoreThe virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr
In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show More