Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes delay and discontinuity of data flow. To overcome delay or interruption problems, we utilized the Software-Defined Network (SDN), Machine Learning (ML), and Blockchain (BC) techniques, which support the Tor network to intelligently speed up exchanging the public key via the proactive processing of the Tor network security management information. Consequently, the combination network (ITor-SDN) keeps data flow continuity to a Tor client. We simulated and emulated the proposed network by using Mininet and Shadow simulations. The findings of the performed analysis illustrate that the proposed network architecture enhances the overall performance metrics, showcasing a remarkable advancement of around 55%. This substantial enhancement is achieved through the seamless execution of the innovative ITor-SDN network combination approach.
Background : Bone infections is one of the most challenging orthopaedic complications, with considerable morbidity. There is significant impact on the life of the patients; socially, financially, physically, and mentally and it could be a limb-threatening complication. Osteomyelitis is a bone infection usually caused by bacteria, including mycobacteria, but mainly Staphylococcus aureus which is the most commonly responsible bacteria . Aim of study: To evaluate our management policy of chronic osteomylitis (C.O.M).
Methods : 32 patients presented with different types &forms of chronic osteomyelitis in many sites of long & flat bones such as tibia , femur, ,humerus ,iliac bones and knee joint , which are not response to previous
Optimized Link State Routing Protocol (OLSR) is an efficient routing protocol used for various Ad hoc networks. OLSR employs the Multipoint Relay (MPR) technique to reduce network overhead traffic. A mobility model's main goal is to realistically simulate the movement behaviors of actual users. However, the high mobility and mobility model is the major design issues for an efficient and effective routing protocol for real Mobile Ad hoc Networks (MANETs). Therefore, this paper aims to analyze the performance of the OLSR protocol concerning various random and group mobility models. Two simulation scenarios were conducted over four mobility models, specifically the Random Waypoint model (RWP), Random Direction model (RD), Nomadic Co
... Show MoreThe inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show MoreBackground: The Covid-19 pandemic changed the world; its most important achievement for education was changing the approach from traditional to virtual education. The present study aimed to investigate the role of virtual education networks on mental health of students including personality, beliefs, scientific, and cultural dimensions, in selected countries.Methods: This was an exploratory and applied study. According to the phenomenology strategy, theoretical saturation occurred after 24 semi-structured and targeted qualitative interviews with teachers from Iran, Iraq, Syria and Lebanon, in 2023. Quantitative data was collected through a researcher-made online questionnaire with 423 participants. Teachers with at least a Bachelor’s degr
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreLocalization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo
... Show MoreThe employment of cognitive radio (CR) is critical to the successful development of wireless communications. In this field, especially when using the multiple input multiple output (MIMO) antenna technology, energy consumption is critical. If the principal user (PU) is present, developers can utilize the energy detecting approach to tell. The researchers employed two distinct phases to conduct their research: the intense and accurate sensing stages. After the furious sensing step was completed, the PU user was identified as having a maximum or minimal energy channel. There are two situations in which the proposed algorithm's performance is tested: channels for fading AWGN and Rayleigh. When the proposed methods' simulation results a
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
<abstract><p>Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel
... Show More