Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes delay and discontinuity of data flow. To overcome delay or interruption problems, we utilized the Software-Defined Network (SDN), Machine Learning (ML), and Blockchain (BC) techniques, which support the Tor network to intelligently speed up exchanging the public key via the proactive processing of the Tor network security management information. Consequently, the combination network (ITor-SDN) keeps data flow continuity to a Tor client. We simulated and emulated the proposed network by using Mininet and Shadow simulations. The findings of the performed analysis illustrate that the proposed network architecture enhances the overall performance metrics, showcasing a remarkable advancement of around 55%. This substantial enhancement is achieved through the seamless execution of the innovative ITor-SDN network combination approach.
This research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show MoreAcid dissociation constants of some Schiff bases derived from 4, 6-dimethyl 2-amino pyrimidine of the type (1) in 50% V/V dioxane-water mixture in 0.003M KCl, at three different temperatures were determined potentiometrically. The thermodynamic energies were calculated and a good linear correlation was obtained between pKa and IR OH. Stretching frequencies.
The Estimation Of The Reliability Function Depends On The Accuracy Of The Data Used To Estimate The Parameters Of The Probability distribution, and Because Some Data Suffer from a Skew in their Data to Estimate the Parameters and Calculate the Reliability Function in light of the Presence of Some Skew in the Data, there must be a Distribution that has flexibility in dealing with that Data. As in the data of Diyala Company for Electrical Industries, as it was observed that there was a positive twisting in the data collected from the Power and Machinery Department, which required distribution that deals with those data and searches for methods that accommodate this problem and lead to accurate estimates of the reliability function,
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise
... Show MoreA fast moving infrared excess source (G2) which is widely interpreted as a core-less gas and dust cloud approaches Sagittarius A* (Sgr A*) on a presumably elliptical orbit. VLT
In the field of civil engineering, the adoption and use of Falling Weight Deflectometers (FWDs) is seen as a response to the ever changing and technology-driven world. Specifically, FWDs refer to devices that aid in evaluating the physical properties of a pavement. This paper has assessed the concepts of data processing, storage, and analysis via FWDs. The device has been found to play an important role in enabling the operators and field practitioners to understand vertical deflection responses upon subjecting pavements to impulse loads. In turn, the resultant data and its analysis outcomes lead to the backcalculation of the state of stiffness, with initial analyses of the deflection bowl occurring in conjunction with the measured or assum
... Show MoreThis study aimed to investigate the role of Big Data in forecasting corporate bankruptcy and that is through a field analysis in the Saudi business environment, to test that relationship. The study found: that Big Data is a recently used variable in the business context and has multiple accounting effects and benefits. Among the benefits is forecasting and disclosing corporate financial failures and bankruptcies, which is based on three main elements for reporting and disclosing that, these elements are the firms’ internal control system, the external auditing, and financial analysts' forecasts. The study recommends: Since the greatest risk of Big Data is the slow adaptation of accountants and auditors to these technologies, wh
... Show MoreThe regression analysis process is used to study and predicate the surface response by using the design of experiment (DOE) as well as roughness calculation through developing a mathematical model. In this study; response surface methodology and the particular solution technique are used. Design of experiment used a series of the structured statistical analytic approach to investigate the relationship between some parameters and their responses. Surface roughness is one of the important parameters which play an important role. Also, its found that the cutting speed can result in small effects on surface roughness. This work is focusing on all considerations to make interaction between the parameters (position of influenc
... Show MoreIn this research, an unknown space-dependent force function in the wave equation is studied. This is a natural continuation of [1] and chapter 2 of [2] and [3], where the finite difference method (FDM)/boundary element method (BEM), with the separation of variables method, were considered. Additional data are given by the one end displacement measurement. Moreover, it is a continuation of [3], with exchanging the boundary condition, where are extra data, by the initial condition. This is an ill-posed inverse force problem for linear hyperbolic equation. Therefore, in order to stabilize the solution, a zeroth-order Tikhonov regularization method is provided. To assess the accuracy, the minimum error between
... Show More