In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss is a gathering of numerous issues for example rheology of mud), flow regime and the well geometry. An artificial neural network (ANN) that used in this effort is an accurate or computational model stimulated by using JMP software. The aim of this study is to find out the effect of rheological models on the hydraulic system and to use the artificial neural network to simulate the parameters that were used as emotional parameters and then find an equation containing the parameters μp, Yp and P Yp/ μp to calculate the pressure losses in a hydraulic system. Data for 7 intermediate casing wells with 12.25" hole size and 95/8" intermediate casing size are taken from the southern Iraq field used for the above purpose. Then compare the result with common equations used to calculate pressure losses in a hydraulic system. Also, we calculate the optimum flow by the maximum impact force method and then offset in Equation obtained by (Joint Marketing Program) JMP software. Finally, the equation that was found to calculate pressure losses instead of using common hydraulic equations with long calculations gave very close results with less calculation.
Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreIn this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
An integrated GIS-VBA (Geographical Information System – Visual Basic for Application), model is developed for selecting an optimum water harvesting dam location among an available locations in a watershed. The proposed model allows quick and precise estimation of an adopted weighted objective function for each selected location. In addition to that for each location, a different dam height is used as a nominee for optimum selection. The VBA model includes an optimization model with a weighted objective function that includes beneficiary items (positive) , such as the available storage , the dam height allowed by the site as an indicator for the potential of hydroelectric power generation , the rainfall rate as a source of water . In a
... Show MoreAbstract:
The phenomenon of financial failure is one of the phenomena that requires special attention and in-depth study due to its significant impact on various parties, whether they are internal or external and those who benefit from financial performance reports. With the increase in cases of bankruptcy and default facing companies and banks, interest has increased in understanding the reasons that led to this financial failure. This growing interest should be a reason to develop models and analytical methods that help in the early detection of this increasing phenomenon in recent year . The research examines the use of
... Show MoreOften there is no well drilling without problems. The solution lies in managing and evaluating these problems and developing strategies to manage and scale them. Non-productive time (NPT) is one of the main causes of delayed drilling operations. Many events or possibilities can lead to a halt in drilling operations or a marginal decrease in the advancement of drilling, this is called (NPT). Reducing NPT has an important impact on the total expenditure, time and cost are considered one of the most important success factors in the oil industry. In other words, steps must be taken to investigate and eliminate loss of time, that is, unproductive time in the drilling rig in order to save time and cost and reduce wasted time. The data of
... Show MorePermeability is an essential parameter in reservoir characterization because it is determined hydrocarbon flow patterns and volume, for this reason, the need for accurate and inexpensive methods for predicting permeability is important. Predictive models of permeability become more attractive as a result.
A Mishrif reservoir in Iraq's southeast has been chosen, and the study is based on data from four wells that penetrate the Mishrif formation. This study discusses some methods for predicting permeability. The conventional method of developing a link between permeability and porosity is one of the strategies. The second technique uses flow units and a flow zone indicator (FZI) to predict the permeability of a rock mass u
... Show MoreStreamlined peristaltic transport patterns, bifurcations of equilibrium points, and effects of an inclined magnetic field and channel are shown in this study. The incompressible fluid has been the subject of the model's investigation. The Reynolds values for evanescence and an infinite wavelength are used to constrain the flow while it is being studied in a slanted channel with a slanted magnetic field. The topologies over their domestic and cosmopolitan bifurcations are investigated for the outcomes, and notion of the dynamical system are employed. The Mathematica software is used to solve the nonlinear autonomous system. The flow is found to have three different flow distributions namely augmented, trapping and backward flow. Outc
... Show MorePalm vein recognition is a one of the most efficient biometric technologies, each individual can be identified through its veins unique characteristics, palm vein acquisition techniques is either contact based or contactless based, as the individual's hand contact or not the peg of the palm imaging device, the needs a contactless palm vein system in modern applications rise tow problems, the pose variations (rotation, scaling and translation transformations) since the imaging device cannot aligned correctly with the surface of the palm, and a delay of matching process especially for large systems, trying to solve these problems. This paper proposed a pose invariant identification system for contactless palm vein which include three main
... Show MoreSolar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show More