In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss is a gathering of numerous issues for example rheology of mud), flow regime and the well geometry. An artificial neural network (ANN) that used in this effort is an accurate or computational model stimulated by using JMP software. The aim of this study is to find out the effect of rheological models on the hydraulic system and to use the artificial neural network to simulate the parameters that were used as emotional parameters and then find an equation containing the parameters μp, Yp and P Yp/ μp to calculate the pressure losses in a hydraulic system. Data for 7 intermediate casing wells with 12.25" hole size and 95/8" intermediate casing size are taken from the southern Iraq field used for the above purpose. Then compare the result with common equations used to calculate pressure losses in a hydraulic system. Also, we calculate the optimum flow by the maximum impact force method and then offset in Equation obtained by (Joint Marketing Program) JMP software. Finally, the equation that was found to calculate pressure losses instead of using common hydraulic equations with long calculations gave very close results with less calculation.
Geologic modeling is the art of constructing a structural and stratigraphic model of a reservoir from analyses and interpretations of seismic data, log data, core data, etc. [1].
A static reservoir model typically involves four main stages, these stages are Structural modeling, Stratigraphic modeling, Lithological modeling and Petrophysical modeling [2].
Ismail field is exploration structure, located in the north Iraq, about 55 km north-west of Kirkuk city, to the north-west of the Bai Hassan field, the distance between the Bai Hassan field and Ismael field is about one kilometer [3].
Tertiary period reservoir sequences (Main Limestone), which comprise many economica
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The results showed
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The res
... Show MoreThe research include a pulsed Nd: YAG Laser with (300µs) pulse duration in the TEM00 mode at (1.06µm) wavelength for energies between (0.5-3) J was employed to drill Brass material which is use in industrial applications. The process of drill was assisted by an electric field. This resulted in an increase in the hole aspect ratio by the value (45%) and decrease in the hole taper by the value (25%) of its value under ordinary drilling conditions using the same input energy.
In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreIn drilling fluid program, selecting the drilling fluid that will reduce the lost time is the first objective, and will be economical regardless of its cost. The amount and type of solids in drilling fluid is the primary control of the rheological and filtration properties. Palygorskite clay (attapulgite) is an active solid that has the ability to reactive with its environment and form a gel structure within a fluid and due to its stability in the presence of brines and electrolytes this type of clay is preferred for use. The aim of this study is to improve properties of Iraqi palygorskite (PAL) by adding different chemical additives such as caustic soda NaOH and soda ash Na2CO3 with a different con
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreThe Iraqi outfit is characterized by special features and identity that are closely related to the traditions, customs, religious and social beliefs and other references of the Iraqi environment and its factors affecting the individual and society. Every place in Iraq has its own uniform, which differs in terms of its artistic, aesthetic and functional components from place to place.
The abaya, especially worn by women, is especially distinct in terms of the design of the uniform, the nature of the cloth made of it, as well as the color of the abaya, which is dominated by black in most designs. The Dar Al-Taros Center and Textile Research initiated the construction of theoretical and practical bases in the design of contemporary
... Show MoreThis paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.