The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of 30.6, 20.8, and 100%, respectively. There was also a 53.6% increase in absorbed energy at the ultimate load. The shear reinforcement arrangement had a greater impact and a significant effect on the structural response than the number of lacing bars. For lacing reinforcement with a phase difference equivalent to the half-lacing cycle (i.e., phase lag lacing), the percentage of improvement under different loading stages was 6.7-27.1% and 20.8-113.3%, respectively. The structural responses are significantly impacted by the lacing arrangement; members with two and three lacing bars, respectively, exhibited improvements in ultimate load of 30.6% and 47%. Beyond the yielding stage, the phase lag lacing specimens deviated from those without phase lag lacing and normal shear stirrups because of the lacing contribution. Phase lag specimens showed more strain than specimens without phase lag lacing, meaning that the lacing reinforcement contributed more to the beam strength. It was found that the first shear cracking load of all the laced reinforced specimens was higher than that of the conventional shear stirrup specimens. Phase lag lacing produced the greatest improvement, with two bars achieving 92.44% and three bars achieving 217.07%. For the aforementioned number of bars, lacing shear reinforcement without phase lag was less successful, with 36.91% and 46.53%, respectively. Doi: 10.28991/CEJ-2025-011-02-019 Full Text: PDF
: The aim of this research is to investigate the impact of Woods ' strategy in collecting second graders average for physics. To achieve the objective researcher coined the following hypothesis: there was no statistically significant difference at a level (0.05) between the average grades of the experimental group students studying physics as Woods and strategy between the average control group students who are studying the same article in the regular way. Test collection. Search sample amounted to (83) students and (42) students for the experimental group, and (41) students for the control group. Students were subjected to test experiment is composed of (30) after the completion of the experiment. And use appropriate statistical methods re
... Show MoreThe purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreIn this work, results of a mathematical analysis of the role of workpiece preheating in laser keyhole welding were presented. This analysis considered the steady-state welding as well as certain range of boundary conditions over which preheating effect would be indicated. This work is an attempt to interpret the role of preheating to increase welding depth and perform keyhole welding with high quality using physical and thermal properties of steel alloys.
Phlebotomus papatasi sand fly is the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Iraq. The aim of this study was to assess and predict the effects of climate change on the distribution of the cutaneous leishmaniasis (CL) cases and the main vector presently and in the future. Data of the CL cases were collected for the period (2000-2018) in addition to sand fly (SF) abundance. Geographic information system, R studio and MaxEnt (Maximum entropy niche model) software were used for analysis and predict effect of (elevation, population, Bio1-19, and Bio28-35) on CL cases distribution and SF occurrence. HadGEM2-ES model with two climate change scenarios, RCP 4.5 and RCP 8.5 were used for future projections 2050. The results showed th
... Show MoreBackground: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa
... Show MoreBackground: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreThis research is focusing on finding more effective polymers that leads to enhance the rheological properties of Water Base Muds. The experiments are done for different types of mud for all substances which are Polyacrylamide, Xanthan gum, CMC (Carboxyl Methyl Cellulose). This study shows the effect of add polymer to red bentonite mud, effect of add polymer to Iraqi bentonite mud, the effect of add bentonite to polymer mud. The mud properties of Iraqi bentonite blank are enhanced after adding the polymers to the blank mix, CMC gives the highest value of plastic viscosity and Gel strength than others; X-anthan gives the highest value of yield point and gel strength than others. For the red bentonite mud, Polyacrylamide has the highes
... Show MoreIn the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr
... Show More