The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of 30.6, 20.8, and 100%, respectively. There was also a 53.6% increase in absorbed energy at the ultimate load. The shear reinforcement arrangement had a greater impact and a significant effect on the structural response than the number of lacing bars. For lacing reinforcement with a phase difference equivalent to the half-lacing cycle (i.e., phase lag lacing), the percentage of improvement under different loading stages was 6.7-27.1% and 20.8-113.3%, respectively. The structural responses are significantly impacted by the lacing arrangement; members with two and three lacing bars, respectively, exhibited improvements in ultimate load of 30.6% and 47%. Beyond the yielding stage, the phase lag lacing specimens deviated from those without phase lag lacing and normal shear stirrups because of the lacing contribution. Phase lag specimens showed more strain than specimens without phase lag lacing, meaning that the lacing reinforcement contributed more to the beam strength. It was found that the first shear cracking load of all the laced reinforced specimens was higher than that of the conventional shear stirrup specimens. Phase lag lacing produced the greatest improvement, with two bars achieving 92.44% and three bars achieving 217.07%. For the aforementioned number of bars, lacing shear reinforcement without phase lag was less successful, with 36.91% and 46.53%, respectively. Doi: 10.28991/CEJ-2025-011-02-019 Full Text: PDF
The study aimes to analyze the discourse of Arab tweeters regarding the normalization of Arab-Israeli relations on the social media site (Twitter).
Study Methodology: The study relay on the survey method, using the comprehensive survey method, and this research is one of the descriptive types that aim to describe the phenomenon in a qualitative way, and discuss it through the method of in-depth analysis, in addition to using the tools of (discourse analysis).
Study sample: A sample of (8686) tweets for (7425) tweeters, which was posted on Twitter during the period from 15/9 to 30/9/2020, on the issue of normalizing Arab-Israeli relations.
Study tools: The data study was collected using the data mining tool from social networks (
The increase the rates of natural growth, urbanization and continuous migration, this has generated constant pressure and, as a result, the capital city of Baghdad faces a number of challenges related to its urban environment, including the challenge of acquiring real estate.
and this research examines the impact of these holdings, representing the main base from which the various projects originate Urban in all areas (economic, social, and recreational).
this leads us to the research problem of the obstacles that arise during the process of acquiring real estate to carry out development projects, and to achieve the objectives of research, namely (work to create a regulatory methodology
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreTheatrical art, from (Plato) to (Heidegger), passing through (Husserl) and (Husserl) has propagated the parallel relations between the overlapping formal patterns in the world of hypotheses crowded with diaspora and scattering, leading to the manifestations of implicit meaning in the intellectual and aesthetic discourse, through the deconstructive pattern that restructures The aesthetic image according to the aesthetic data to be employed, so the effectiveness of the deconstructive system had an important role in authorizing the Ghanaian logic and continuity on which the Western meta meaning was based, and the artistic scene was subjected to it in line with literature and art to be able to pay attention to the achievement and clarify it
... Show MoreMany authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai
... Show MoreAbstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests fo
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show More