Stumpff functions are an infinite series that depends on the value of z. This value results from multiplying the reciprocal semi-major axis with a universal anomaly. The purpose from those functions is to calculate the variation of the universal parameter (variable) using Kepler's equation for different orbits. In this paper, each range for the reciprocal of the semi-major axis, universal anomaly, and z is calculated in order to study the behavior of Stumpff functions C(z) and S(z). The results showed that when z grew, Stumpff functions for hyperbola, parabola, and elliptical orbits were also growing. They intersected and had a tendency towards zero for both hyperbola and parabola orbits, but for elliptical orbits, Stumpff functions exhibited unstable behavior, with distinct, insignificant peaks disappearing as z increased. In comparison to other published studies in this section, the results showed good agreement.
In this paper, Bayes estimators of Poisson distribution have been derived by using two loss functions: the squared error loss function and the proposed exponential loss function in this study, based on different priors classified as the two different informative prior distributions represented by erlang and inverse levy prior distributions and non-informative prior for the shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the Poisson distribution has also been derived. A simulation study has been fulfilled to compare the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate (MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different cases of the
... Show MoreThe distortion, which occurs to the image often affects the existing amount of information, weakens its sharpness, decreases its contrast, thus leads to overlapping details of the various regions, and decreases image resolution. Test images are used to determine the image quality and ability of different visual systems, as we depended in our study on test image, half black and half white. Contrast was studied in the petition so as to propose several new methods for different contrasts in the edge of images where the results of technical differences would identify contrast image under different lighting conditions.
In this study, different methods were used for estimating location parameter and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment estimation (ME),and approximation estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile as estimation for distribution f
... Show MoreThe Taylor series is defined by the f and g series. The solution to the satellite's equation of motion is expanding to generate Taylor series through the coefficients f and g. In this study, the orbit equation in a perifocal system is solved using the Taylor series, which is based on time changing. A program in matlab is designed to apply the results for a geocentric satellite in low orbit (height from perigee, hp= 622 km). The input parameters were the initial distance from perigee, the initial time, eccentricity, true anomaly, position, and finally the velocity. The output parameters were the final distance from perigee and the final time values. The results of radial distance as opposed to time were plotted for dissimilar times in
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.
In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
Accurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetylene over the CeO2(111) surface. Overall, we find th
... Show MoreIn this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th
... Show More