Preferred Language
Articles
/
uBesKpABVTCNdQwCvYR7
Memory Effects Due to Fractional Time Derivative and Integral Space in Diffusion Like Equation Via Haar Wavelets

Crossref
View Publication
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Physics: Conference Series
Integral transforms defined by a new fractional class of analytic function in a complex Banach space
Abstract<p>In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.</p>
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Application of the Variational Iteration Method for the time-fractional Kaup-Kupershmidt Equation and the Boussinesq-Burger equation

     The variational iteration method is used to deal with linear and nonlinear differential equations. The main characteristics of the method lie in its flexibility and ability to accurately and easily solve nonlinear equations. In this work, a general framework is presented for a variational iteration method for the analytical treatment of partial differential equations in fluid mechanics. The Caputo sense is used to describe fractional derivatives. The time-fractional Kaup-Kupershmidt (KK) equation is investigated, as it is the solution of the system of partial differential equations via the Boussinesq-Burger equation. By comparing the results that are obtained by the variational iteration method with those obtained by the two-dim

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions of Fractional Integral and Fractional Integrodifferential Equations

 In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.

View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
On Analytical Solution of Time-Fractional Type Model of the Fisher’s Equation

In this paper, the time-fractional Fisher’s equation (TFFE) is considered to exam the analytical solution using the Laplace q-Homotopy analysis method (Lq-HAM)”. The Lq-HAM is a combined form of q-homotopy analysis method (q-HAM) and Laplace transform. The aim of utilizing the Laplace transform is to outdo the shortage that is mainly caused by unfulfilled conditions in the other analytical methods. The results show that the analytical solution converges very rapidly to the exact solution.

Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
An Approximate Solution of the Space Fractional-Order Heat Equation by the Non-Polynomial Spline Functions

     The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline  to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.

Scopus (4)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
A New Mixed Nonpolynomial Spline Method for the Numerical Solutions of Time Fractional Bioheat Equation

In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
Some Results in Grűnwald-Letnikov Fractional Derivative and its Best Approximation
Abstract<p>In This paper, we have been approximated Grűnwald-Letnikov Derivative of a function having m continuous derivatives by Bernstein Chlodowsky polynomials with proving its best approximation. As well as we have been solved Bagley-Torvik equation and Fokker–Planck equation where the derivative is in Grűnwald-Letnikov sense.</p>
Scopus (6)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Sun Jul 01 2012
Journal Name
Baghdad University College Of Education Ibn Al-haitham
Numerical Solution of Linear System of Fredholm Integral Equations Using Haar Wavelet Method

The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.

View Publication
Publication Date
Tue Apr 04 2023
Journal Name
Results In Nonlinear Analysis
The fractional integrodifferential operator and its univalence and boundedness features according to Pre-Schwarzian derivative structure

Complex-valued regular functions that are normalized in the open unit disk are vastly studied. The current study introduces a new fractional integrodifferential (non-linear) operator. Based on the pre-Schwarzian derivative, certain appropriate stipulations on the parameters included in this con-structed operator to be univalent and bounded are investigated and determined.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Mar 04 2023
Journal Name
Baghdad Science Journal
Approximate Solution of Sub diffusion Bio heat Transfer Equation

In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF