Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreIn this paper we proposed a new method for selecting a smoothing parameter in kernel estimator to estimate a nonparametric regression function in the presence of missing values. The proposed method is based on work on the golden ratio and Surah AL-E-Imran in the Qur'an. Simulation experiments were conducted to study a small sample behavior. The results proved the superiority the proposed on the competition method for selecting smoothing parameter.
Abstract:
This study is studied one method of estimation and testing parameters mediating variables in a structural equations model SEM is causal steps method, in order to identify and know the variables that have indirect effects by estimating and testing mediation variables parameters by the above way and then applied to Iraq Women Integrated Social and Health Survey (I-WISH) for year 2011 from the Ministry of planning - Central statistical organization to identify if the variables having the effect of mediation in the model by the step causal methods by using AMOS program V.23, it was the independent variable X represents a phenomenon studied (cultural case of the
In this research was the study of a single method of estimation and testing parameters mediating variables (Mediation) in a specimen structural equations SEM a bootstrap method, for the purpose of application of the integrated survey of the situation Marital data and health mirror Iraqi (I-WISH) for the year 2011 from the Ministry of Planning - device Central Bureau of Statistics, and applied to the appropriate data from the terms of the data to a form of structural equation SEM using factor analysis affirmative (Confirmatory Factor analysis) CFA As a way to see the match variables that make up the model, and after confirming the model matching or suitability are having the effect of variables mediation in the model tested by the
... Show MoreThe COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre
... Show MoreR. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
This article suggests and explores a three-species food chain model that includes fear effects, refuges depending on predators, and cannibalism at the second level. The Holling type II functional response determines food consumption between stages of the food chain. This study examined the long-term behavior and impacts of the suggested model's essential elements. The model's solution properties were studied. The existence and stability of every probable equilibrium point were examined. The persistence needs of the system have been determined. It was discovered what conditions could lead to local bifurcation at equilibrium points. Appropriate Lyapunov functions are utilized to investigate the overall dynamics of the system. To support the a
... Show MoreA new Differential Evolution (ARDE) algorithm is introduced that automatically adapt a repository of DE strategies and parameters adaptation schemes of the mutation factor and the crossover rate to avoid the problems of stagnation and make DE responds to a wide range of function characteristics at different stages of the evolution. ARDE algorithm makes use of JADE strategy and the MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive procedure called adaptive repository (AR) has been developed to select the appropriate combinations of the JADE strategies and the parameter control schemes of the MDE_pBX to generate the next population based on their fitness values. Experimental results have been presented to confirm the reli
... Show More