Preferred Language
Articles
/
uBe6-I8BVTCNdQwC6IHH
Four Points Block Method with Second Derivative for Solving First Order Ordinary Differential Equations
...Show More Authors

Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs
...Show More Authors

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (9)
Scopus
Publication Date
Thu Feb 25 2016
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Block Matching Algorithm Using Mean and Low Order Moments
...Show More Authors

In this study, a fast block matching search algorithm based on blocks' descriptors and multilevel blocks filtering is introduced. The used descriptors are the mean and a set of centralized low order moments. Hierarchal filtering and MAE similarity measure were adopted to nominate the best similar blocks lay within the pool of neighbor blocks. As next step to blocks nomination the similarity of the mean and moments is used to classify the nominated blocks and put them in one of three sub-pools, each one represents certain nomination priority level (i.e., most, less & least level). The main reason of the introducing nomination and classification steps is a significant reduction in the number of matching instances of the pixels belong to the c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Approximated Methods for Linear Delay Differential Equations Using Weighted Residual Methods
...Show More Authors

The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).

View Publication Preview PDF
Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF
Publication Date
Wed Apr 25 2012
Journal Name
The Nineteenth Scientific Conference The College Of Education \al-mustansiriyah University
Solution of Ordinary BVP's of Eighth Order Using Osculatory Interpolation Technique
...Show More Authors

The aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.

View Publication
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Solving Two-Points Singular Boundary Value Problem Using Hermite Interpolation
...Show More Authors

In this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Approximated Solution for The Nonlinear Second Order Delay Multi-Value Problems
...Show More Authors

This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.

View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Some Common Fixed Points Theorems of Four Weakly Compatible Mappings in Metric Spaces
...Show More Authors

                 In this paper, we proved coincidence points theorems for two pairs mappings which are defined on nonempty subset   in metric spaces by using condition (1.1). As application, we established a unique common fixed points theorems for these mappings by using the concept weakly compatible (R-weakly commuting) between these mappings.

View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Isa Transactions
Design of a Complex fractional Order PID controller for a First Order Plus Time Delay system
...Show More Authors

View Publication
Scopus (42)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions Of The Nonlocal Problems For The Diffusion Partial Differential Equations
...Show More Authors

    In this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.

View Publication Preview PDF