The purpose of this study is to investigate the effect of an elastic wall on the peristaltic flow of Williamson fluid between two concentric cylinders, where the inner tube is cylindrical with an inelastic wall and the outer wall is a regular elastic sine wave. For this problem, cylindrical coordinates are used with a short wavelength relative to channel width for its length, as well as the governing equations of Williamson fluid in the Navier-Stokes equations. The results evaluated using the Mathematica software program. The Mathematica program used by entering the various data for the parameters, where the program shows the graphs, then the effect of these parameters became clear and the results mentioned in the conclusion. Williamso
... Show MoreThe purpose of this study is to calculate the effect of the elastic wall of a hollow channel of Jeffrey's fluid by peristaltic flow through two concentric cylinders. The inside tube is cylindrical and the outside is a regular elastic wall in the shape of a sine wave. Using the cylindrical coordinates and assuming a very short wavelength relative to the width of the channel to its length and using governing equations for Jeffrey’s fluid in Navier-Stokes equations, the results of the problem are obtained. Through the Mathematica program these results are analysed.
The properties of capturing of peristaltic flow to a chemically reacting couple stress fluid through an inclined asymmetric channel with variable viscosity and various boundaries are investigated. we have addressed the impacts of variable viscosity, different wave forms, porous medium, heat and mass transfer for peristaltic transport of hydro magnetic couple stress liquid in inclined asymmetric channel with different boundaries. Moreover, The Fluid viscosity assumed to vary as an exponential function of temperature. Effects of almost flow parameters are studied analytically and computed. An rising in the temperature and concentration profiles return to heat and mass transfer Biot numbers. Noteworthy, the Soret and Dufour number effect resul
... Show MoreIn this article, we investigate the heat transfer on nanoparticles Jeffrey Hamel flow problem between two rigid plane walls. Water is used as a main fluid using four different types of nanoparticles, namely aluminum, cuprous, titanium, and silver. The results of nonlinear transformational equations with boundary conditions are solved analytically and numerically. The perturbation iteration scheme (PIS) is used for the analytic solution, while for determining the numerical results, the Rang-Kutta of the four-order scheme (RK4S) is used. The effects on the behavior of non-dimensional velocity and temperature distributions are presented in the form of tables and graphs for different values of emerging physical parameters (Rey
... Show MoreIn this paper, the peristaltic flow under the impact of heat transfer, rotation and induced magnetic field of a two dimensional for the Bingham plastic fluid is discussed. The coupling among of momentum with rotational, energy and the induced magnetic field equations are achieved by the perturbation approximation method and the mathematica software to solve equations that are nonlinear partial differential equations. The fluid moves in an asymmetric channel, and assumption the long wavelength and low Reynolds number, approximation are used for deriving a solution of the flow. Expression of the axial velocity, temperature, pressure gradient, induced magnetic field, magnetic force, current density are developed the eff
... Show MoreIn this research, the effect of the rotation variable on the peristaltic flow of Sutterby fluid in an asymmetric channel with heat transfer is investigated. The modeling of mathematics is created in the presence of the effect of rotation, using constitutive equations following the Sutterby fluid model. In flow analysis, assumptions such as long wave length approximation and low Reynolds number are utilized. The resulting nonlinear equation is numerically solved using the perturbation method. The effects of the Grashof number, the Hartmann number, the Hall parameter, the magnetic field, the Sutterby fluid parameter, and heat transfer analysis on the velocity and the pressure gradient are analyzed graphically. Utilizing MATHEMATIC
... Show Morein the present article, we present the peristaltic motion of “Hyperbolic Tangent nanofluid” by a porous area in a two dimensional non-regular a symmetric channel with an inclination under the impact of inclination angle under the impact of inclined magnetic force, the convection conditions of “heat and mass transfer” will be showed. The matter of the paper will be further simplified with the assumptions of long wave length and less “Reynolds number”. we are solved the coupled non-linear equations by using technical analysis of “Regular perturbation method” of series solutions. We are worked out the basic equations of continuity, motion, temperature, and volume fraction
In paper, we study the impact of the rotationn inclined magnetic felid and inclined symmetric channel with slip condition on peristaltic transport using incompressible non-Newtonian fluid. Slip conditions for the concentration and heat transfer are considered. We use the conditions on the fluid, namely infinite wavelength and low - Reynolds number to simplify the governed equations that described - motion flow, energy and concentration. These equations ofroblem are solved by the perturbation technique and restricted the number of Bingham to a small value to find the final expression of the stream function. The Bingham number, Brinkman number, Soret number, Dufour number, temperature, Hartman number and other parameters are teste
... Show More