Drug solubility and dissolution remain a significant challenge in pharmaceutical formulations. This study aimed to formulate and evaluate repanglinide (RPG) nanosuspension-based buccal fast-dissolving films (BDFs) for dissolution enhancement. RPG nanosuspension was prepared by the antisolvent-precipitation method using multiple hydrophilic polymers, including soluplus®, polyvinyl alcohol, polyvinyl pyrrolidine, poloxamers, and hydroxyl propyl methyl cellulose. The nanosuspension was then directly loaded into BDFs using the solvent casting technique. Twelve formulas were prepared with a particle size range of 81.6-1389 nm and PDI 0.002-1 for the different polymers. Nanosuspensions prepared with soluplus showed a favored mean particle size of 82.6 ± 3.2 nm. The particles were spherical and non-aggregating, as demonstrated by SEM imaging. FTIR showed no interaction between soluplus and RPG. Faster dissolution occurred for the nanosuspension in comparison with pure RPG (complete release vs 60% within 30 min). The nanosuspension was successfully incorporated into BDFs. The optimum film formula showed 28 s disintegration time, and 97.3% RPG released within 10 min. Ex-vivo permeation profiles revealed improved RPG nanosuspension permeation with the cumulative amount of RPG permeated is103.4% ± 10.1 and a flux of 0.00275 mg/cm2/min compared to 39.3% ± 9.57 and a flux of 0.001058 mg/cm2/min for pure RPG. RPG was successfully formulated into nanosuspension that boosted drug dissolution and permeation. The selection of the ultimate NP formula was driven by optimal particle size, distribution, and drug content. Soluplus NPs were shown to be the successful formulations, which were further incorporated into a buccal film. The film was evaluated for ex-vivo permeation, confirming successful RPG formulation with improved performance compared to pure drugs.
The present work describes numerical and experimental investigation of the heat transfer characteristics in a plate-fin, having built-in piezoelectric actuator mounted on the base plate (substrate). The geometrical configuration considered in the present work is representative of a single element of the plate-fin and triple fins. Air is taken as the working fluid. A performance data for a single rectangular fin and triple fins are provided for different frequency levels (5, 30 and
50HZ) , different input power (5,10,20,30,40 and 50W) and different inlet velocity (0.5, 1, 2, 3, 4, 5 and 6m/s) for the single rectangular fin and triple fins with and without oscillation. The investigation was also performed with different geometrical fin
In this study, industrial fiber and polymer mixtures were used for high-speed impact (ballistic) applications where the effects of polymer (epoxy), polymeric
mixture (epoxy + unsaturated polyester), synthetic rubber (polyurethane), Kevlar fiber, polyethylene fiber (ultra High molecular weight) and carbon fiber.
Four successive systems of samples were prepared. the first system component made of (epoxy and 2% graphene and 20 layer of fiber), then ballistic test was
applied, the sample was successful in the test from a distance of 7 m. or more than, by using a pistol personally Glock, Caliber of 9 * 19 mm. The second
system was consisting of (epoxy, 2% graphene, 36 layers of fiber and one layer of hard rubber), it was succeeded
This work aimed to design and testing of a computer program – based eyeQ improvement, photographic memory enhancement, and speed reading to match the reading speed 150 – 250 word per minute (WPM) with the mind ability of processing and eye snap shooting 5000WPM . The package designed based on Visual Basic 6. The efficiency of the designed program was tested on a 10 persons with different levels of education and ages and the results show an increase in their reading speed of approximately 25% in the first month of training with noticeable enhancement in the memory as well as an increase in the ability to read for longer time without feeling nerves or boring, a nonlinear continuously increase in reading speed is assured after the first mo
... Show MoreObjective: The present study was aimed to develop a pH-triggered in situ gel for local release of lidocaine hydrochloride (lidocaine HCL) in the buccal cavity to improve the anesthetic effect of this amino amide drug which has very high water solubility. The formulations were introduced to the oral cavity as a spray to improve compliance and for easier administration.Methods: In this work, two grades of carbopol (934 and 940)-based in situ gel spray were designed. The formulations containing lidocaine HCl 5% were prepared by mixing different concentrations of carbopol with xanthan gum. Eight formulations were investigated and evaluated for gelation capacity, spray angle, volume of solution delivered per each actuation, rheological p
... Show MoreIn the present work, silver nanoparticles were prepared. Nonlinear optical properties and
optical limiting of silver nanoparticles were investigated.Standard chemical synthesis method was used at
diffrent weight ratio(0.038, 0.058 and 0.078) of silver nitrate. Several testing were done to obtain the
characteristics of the sample. Z-Scan experiments were performed using 30 ns Q-switched Nd:YAG
laser at 1064 nm and 532 nm at different intensities. The results showed that the nonlinear refractive
index is directly proportional to the input intensities, which caused by the self-focusing of the material.
In addition, the optical limiting behavior has been studied. The results showed that the sample could be
used as an opt
Indium oxide In2O3 thin films fabricated using thermal evaporation of indium metal in vacuum on a glass substrate at 25oC using array mask, after deposition the indium films have been subjected to thermal oxidation at temperature 400 °C for 1h. The results of prepared Indium oxide reveal the oxidation method as a strong effect on the morphology and optical properties of the samples as fabricated. The band gap (Eg) of In2O3 films at 400 °C is 2.7 eV. Then, SEM and XRD measurements are also used to investigate the morphology and structure of the indium oxide In2O3 thin films. The antimicrobial activity of indium oxide In2O3 thin films was assessed against gram-negative bacterium using inhibition zone of bacteria which improved higher ina
... Show MoreAn overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .