The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue color information. The purpose of this paper is to give the reader a deeper view of (1) enhancing the efficiency of distinguishing fake facial images from real facial images by developing a novel model based on deep learning and Gabor filters and (2) how deep learning (CNN) if combined with forensic tools (Gabor filters) contributed to the detection of deepfakes. Our experiment shows that the training accuracy reaches about 98.06% and 97.50% validation. Likened to the state-of-the-art methods, the proposed model has higher efficiency.
The aim of the present study is to study the meiobenthic invertebrate's community associated with the aquatic plant Ceratophyllum demersum in Al-Salamiyat irrigation canal / north Baghdad, with the chemical and physical parameters of the canal water, during the study period from September 2015 to May 2016. Two sites were chosen for sample collection, the first site (S1) at the beginning of the canal near it's connection with Tigris river, and the second site (S2) after 10 km from the first site. The chemico-physical analysis results revealed that the water temperature ranged from 10-30oC, and pH values ranged between 6.9-7.8, and the dissolved oxygen concentration and the BOD values from 7.2-9.2 mg/l, and 1.2-5.4 mg/l, respectively. The sal
... Show MoreAbstract:
Most of the studies on this subject, small industrial projects, by researchers and scholars in the economic field show the great and increasing importance of doing this kind of projects, the extent of which can be determined by the contribution of these projects to indicators and macroeconomic and sectorial variables. So this research aims to show the extent of the economic contribution of projects in selected international experiences and in the Iraqi economy. As international experiences have provided the opportunity for the progress and growth of small projects in their economies, which led to an increase in the contribution of these projects in the recruitment of economically active manpower, in added
... Show MoreThe historic cities in the Arab and Islamic world (including the cities of the holy shrines in Iraq) suffer from many and varied problems and most notably it is clear in its origin functional structure. It had been transformed from a basic place to live for a few thousand of the population to the center or part of the main center of large city populations of more than one million. Functional structure of the ancient city have been change with the beginning of the twentieth century and accelerated rate of change in the second half of the last century. The research aims to analyze the problems of the historic centers of holy cities and analyze the methods of dealing with these problems, leading to discrimination method could be the
... Show MoreThe main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the reference specim
... Show MoreThis paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show More