Preferred Language
Articles
/
txcem5IBVTCNdQwCk7lp
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue color information. The purpose of this paper is to give the reader a deeper view of (1) enhancing the efficiency of distinguishing fake facial images from real facial images by developing a novel model based on deep learning and Gabor filters and (2) how deep learning (CNN) if combined with forensic tools (Gabor filters) contributed to the detection of deepfakes. Our experiment shows that the training accuracy reaches about 98.06% and 97.50% validation. Likened to the state-of-the-art methods, the proposed model has higher efficiency.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Effect of Orgnizational Learning in gnizational Effectifness: An Applied Study
...Show More Authors

The purpose of this study is testing the effect of orgnizational learning in orgnizational Effectivness an applied study in Al-hiqma Jordinan Medecine Company . study sosiety 88 manegers sleect 80 of them .study used SPSS to test the hypothesis.study reachs to significant conculctions

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Sep 22 2025
Journal Name
Wasit Journal Of Sports Sciences
The impact of the Needham model on learning the skills of dribbling and handling in football for students
...Show More Authors

View Publication
Publication Date
Mon Apr 04 2022
Journal Name
Journal Of Educational And Psychological Researches
Some Indicators of Learning Difficulties and their Relationship to the Self-Concept of Elementary School Students (Case Study)
...Show More Authors

The aim of the research is to identify learning difficulties and their role in children's perception of self-concept. The researcher adopted the descriptive and analytical approach method in this study. A questionnaire was designed by the researcher to collect some related information such as biodata, family, health, diagnostic and behavioral patterns of the case. In addition, the researcher adopted the scale of learning difficulties for elementary school students prepared by Zaidan Ahmed Al-Sartawi (1995), the scale of student appreciation for the survey of learning difficulties for primary school students by Michael Best, which was translated to the Arabic language by (Saeed Abdullah Debis). The researcher adopted also the Self-Concept

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 06 2023
Journal Name
International Journal Of Emerging Technologies In Learning (ijet)
The Impact of a Scenario-Based Learning Model in Mathematics Achievement and Mental Motivation for High School Students
...Show More Authors

Crossref (3)
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of The College Of Languages (jcl)
The Effect of Teaching English Vocabulary Learning Strategies on Iraqi Intermediate School Students’ Vocabulary Performance and Reading Comprehension
...Show More Authors

The present study aims at empirically investigating the effect of vocabulary learning strategies on Iraqi intermediate school students’vocabulary performance and reading comprehension. The population of the present study includes all the 1st year male students of  Al-Wark’a intermediate  school of Al-Risafa 1/ General  Directorate of Education for the first course of the academic year (2015-2016). To achieve the aim of the study ,a pre-test and post-test after (5) weeks of experiment are administrated .The sample of the present study consists of (100) subjects :(50) students as an experimental group and other (50) students as  a control group . The subj

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Journal
The Effects Of Pbl On Understanding Of Thermodynamics, Group Work And Self-Directed Learning Skills Among Physics Undergraduates
...Show More Authors

The aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on the understanding of thermodynamics, group work and self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq, for academic year 2011-2012. In this study, the pre and posttest were done and the instruments were administered to the students for data collection. Inferential statistics were employed to analyze data. The independent variables were the PBL, the PBL with lecture method, and the conventional teaching. Dependent variables of statistical analysis were

... Show More
Publication Date
Wed Nov 25 2020
Journal Name
Plos One
Impact of the COVID-19 pandemic on medical education: Medical students’ knowledge, attitudes, and practices regarding electronic learning
...Show More Authors

The Coronavirus Disease 2019 (COVID-19) pandemic has caused an unprecedented disruption in medical education and healthcare systems worldwide. The disease can cause life-threatening conditions and it presents challenges for medical education, as instructors must deliver lectures safely, while ensuring the integrity and continuity of the medical education process. It is therefore important to assess the usability of online learning methods, and to determine their feasibility and adequacy for medical students. We aimed to provide an overview of the situation experienced by medical students during the COVID-19 pandemic, and to determine the knowledge, attitudes, and practices of medical students regarding electronic medical education.

... Show More
View Publication
Scopus (443)
Crossref (449)
Scopus Clarivate Crossref