Preferred Language
Articles
/
txcJ8pEBVTCNdQwC75yW
Zinc (II) removal from simulated wastewater by electro-membrane extraction approach: Adopting an electrolysis cell with a flat sheet supported liquid membrane
...Show More Authors

The aim of this study is to utilize the electromembrane extraction (EME) system as a manner for effective removal of zinc from aqueous solutions. A novel and distinctive electrochemical cell design was adopted consisting of two glass chambers, a supported liquid membrane (SLM) housing a polypropylene flat membrane infused with 1-octanol and a carrier. Two electrodes were used, a graphite as anode and a stainless steel as cathode. A comprehensive examination of several influential factors including the choice of carrier, the applied voltage magnitude, the initial pH of the donor solution, and the initial concentration of zinc was performed, all in a concerted effort to ascertain their respective impacts on the efficiency of zinc elimination. Two distinct carriers, namely tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl) phosphate (DEHP) were evaluated, in a tandem with utilization of 1-octanol. The results revealed essential role played by the applied voltage in augmenting the rate of mass transfer of zinc across the membrane. The best operating conditions were utilized for 1-octanol enriched with 1.0 vol.% bis(2-ethylhexyl) phosphate as a carrier, applied voltage of 60 V, initial pH of 5, initial zinc concentration of 15 mg L-1, extraction duration of 6 hours, and stirring rate of 1000 rpm. Surprisingly, operating under these meticulously devised conditions culminated in the outstanding removal efficiency of 87.3 %. In comparison with no applied voltage, a substantial enhancement in removal efficiency was observed, trans­cending from a meager 36.67 % to an impressive 87.3 % at 60 V, suggesting thus a tremen­dous potential of EME as an efficacious technique for the elimination of heavy metals.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Advanced nano membrane for an alkaline Fuel Cell
...Show More Authors
Abstract<p>Structural and optical properties were studied as a function of Nano membrane after prepared, for tests. Nano membrane was deposited by the spray coating method on substrates (glass) of thickness 100 mm. The X-ray diffraction spectra of (CNTs, WO3) were studied. AFM tests are good information about the roughness, It had been designed electrolysis cell and fuel cell. Studies have been performed on electrochemical parameters.</p>
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Recovery of methyl orange from aqueous solutions by bulk liquid membrane process facilitated with anionic carrier
...Show More Authors

Dyes are extensively water-soluble and toxic chemicals. The disposing of wastewater rich with such chemicals has severely impacted surface water quality (rivers and lakes). In the current study, an anionic dye, methyl orange, were extracted from wastewater fluids using bulk liquid membranes supplemented with an anionic carrier (Aliquat 336 (QCI)). Parameters including solvent type (carbon tetrachloride and chloroform), membrane stirring speed (100-250 rpm), mixing speed of both phases (50-100 rpm), The feed pH (2-12) and implemented temperature (35-60 °C) were thoroughly analyzed to determine the effect of such variables on extraction effectiveness. Furthermore, the effect of methyl orange (10-50 ppm) in the feed stage and NaOH (0

... Show More
View Publication
Scopus (5)
Scopus Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Removal of 4-Chlorophenoles from Simulated Wastewater by Advanced Oxidation Processes
...Show More Authors

The degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Tue Dec 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Separation of Hexane-Benzene Mixtures by Emulsion Liquid Membrane.
...Show More Authors

The effect of operating parameters on the batch scale separation of hydrocarbon mixture (benzene and hexane) using
emulsion liquid membrane technique is reported. Sparkleen detergent was used as surfactant and heavy mineral oil as
solvent to receive the permeates.
From the experimental results, the parameters that influenced the permeation are, composition of feed, contact time
with solvent, ratio of volume of solvent to volume of hydrocarbon feed, ratio of volume of surfactant solution to volume
of hydrocarbon feed, surfactant concentration, mixing intensity and glycerol as polar additive in the surfactant solution
to eliminate drop breakup.
The best conditions for the separation in this study were found to be: comp

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Second Engineering Scientific Conference
SEPARATION OF ALKALOIDS FROM PLANTS BY BULK LIQUID MEMBRANE TECHNIQUE USING ROTATING DISCS CONTACTOR
...Show More Authors

This paper describes the transport of Alkaloids through Rotating Discs Contactor (RDC) using n-decane as a liquid membrane. The transport of Pelletierine Alkaloid from a source phase through bulk liquid membrane to the receiving phase has been investigated. The general behaviour of Pertraction process indicates that% Extraction of pelletierine Alkaloid increased with increase in the number of stages and the agitation speed but high agitation speed was not favoured due to the increased risk of droplet formation during the operation. The pH of source and receiving phases were also investigated. The effect of organic solvent membrane on the extraction of Pelletierine was evaluated using ndecane, n-hexane and methyl cyclohexane. The results sho

... Show More
Publication Date
Wed Sep 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of medicinal compounds from botanicals using bulk liquid membrane in rotating film contactor: Recovery of vinblastine from catharanthus roseus.
...Show More Authors

The interest of application of liquid membrane (pertraction) processes for recovery of medicinal compounds from dilute ammoniacal leach solutions is demonstrated. Selectivity of the liquid membrane ensures a preferential transport of the desired solute from the native extract into the strip solution, vinblastine was successfully extracted from basic media (pH 9.2) and stripped by acidic media of sulfuric acid (pH= 1.3) applying continuous pertraction in a rotating discs contactor and using n-decane as liquid membrane. Transport of vinblastine in three-liquid-phase system was studied and performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters (apparent rate constants of th

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Removal of Zinc ions from industrial wastewater with wool fibers
...Show More Authors

In this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Sorption of Lead, Zinc and Copper from Simulated Wastewater by Amberlite Ir-120 Resin
...Show More Authors

The presence of heavy metals in the environment is major concern due to their toxicity. In the present study a strong acid cation exchange resin, Amberlite IR 120 was used for the removal of lead, zinc and copper from simulated wastewater. The optimum conditions were determined in a batch system of concentration 100 mg/L, pH range between 1 and 8, contact time between 5 and 120 minutes, and amount of adsorbent was from 0.05 to 0.45 g/100 ml. A constant stirring speed, 180 rpm, was chosen during all of the experiments. The optimum conditions were found to be pH of 4 for copper and lead and pH 6 for zinc, contact time of 60 min and 0.35 g of adsorbent. Three different temperatures (25, 40 and 60°C) were selected to investigate the effect

... Show More
View Publication Preview PDF
Crossref (5)
Crossref