ABSTRACT: In this research SnO2 thin films have been prepared by using hot plate atmospheric pressure chemical vapor deposition (HPCVD) on glass and Si (n-type) substrates at various temperatures. Optical properties have been measured by UV-VIS spectrophotometer, maximum transmittance about (94%) at 400 0C. Structure properties have been studied by using X-ray diffraction (XRD) , its shows that all films have a crystalline structure in nature and by increasing growth temperature from(350-500) 0C diffraction peaks becomes sharper and grain size has been change. Atomic force microscopy (AFM) uses to analyze the morphology of the Tine Oxides surface structure. Roughness & Root mean square for different temperature have been investigated. The r
... Show MoreThis contribution reports a comprehensive investigation into the structural, electronic and thermal properties of bulk and surface terbium dioxide (TbO2); a material that enjoys wide spectra of catalytic and optical applications. Our calculated lattice dimension of 5.36 Å agrees well with the corresponding experimental value at 5.22 Å. Density of states configuration of the bulk structure exhibits a semiconducting nature. Thermo-mechanical properties of bulk TbO2 were obtained based on the quasi-harmonic approximation formalism. Heat capacities, thermal expansions and bulk modulus of the bulk TbO2 were obtained under a wide range of temperatures and pressures. The dependency of these properties on operational pressure is very evident. Cle
... Show MoreAn experimental study is conducted to investigate the effect of heat flux distribution on the boiling safety factor of its cooling channel. The water is allowed to flow in a horizontal circular pipe whose outlet surface is subjected to different heat flux profiles. Four types of heat flux distribution profiles are used during experiments: (constant distribution profile, type a, triangle distribution profile with its maximum in channel center, type b, triangle distribution profile with its maximum in the channel inlet, type c, and triangle distribution profile with its maximum in the channel outlet, type d). The study is conducted using heat sources of (1000 and 2665W), water flow rates of (5, 7 and 9 lit/min). The water
... Show MoreIn this research, the study of thermal treating by laser, plasma glow discharge and tubular furnace on Ti-6Al-4V alloy coated with hydroxyapatite by methods of dip coating and electrophoretic deposition .A group of samples was coated by dip coating and another group was coated by electrophoretic deposition. The first group was treated by pulse laser 10 (mJ) as energy for samples from both coating with uniform distributed pulses on every single sample surface, The second thermal treating was made by plasma glow discharge in a locally made system with argon atmosphere, 600 Volt , and 6 cm distance between the electrodes, The third treating was made by tubular furnace in air atmosphere and 400 °C for 1 hour duration. T
... Show MoreBulk polycrystalline samples have been prepared by the two-step solid state reaction process. It has been observed that as grown Tl2-xHgxSr2Ca2Cu3O10+δ (with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1) corresponds to the 2223 phase. It has been found that Tc varies with Hg content .The optimum Tc is about 120K for the composition Tl1.6Hg0.4Sr2Ca2Cu3O10+δ.The microstructure for Tl1.6Hg0.4Sr2Ca2Cu3O10+δ observed to be most dense and this phase exhibits the highest stability.
The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critica
... Show MoreThe increasing use of plastics in various aspects of modern life resulted in the availability of enormous amount of wastes, including a negative effect on the environment and humans. So it is necessary to find solutions to deal with these wastes and ensure to use them as solutions to use in concrete mix . In this research the production of concrete containing high and low density polyethylene has been used by (5, 10, 15)% as a replacement of part of the volume of sand, so as to obtain concrete good compressive strength as well as other benefits such as improved possibility of pumping concrete and reduce the loss of concrete for workability polymer is a material that is non-absorbable of water . It is also intended to dispose of these was
... Show MoreFilms of pure Poly (methyl methacrylate) PMMA and Iron chromate doped PMMA have been prepared using casting method. Transmission and absorptance spectra have been recorded in the wavelength range (300-900) nm, in order to calculate, single oscillator energy, dispersion energy proposed by Wemple - DiDomenico model, average oscillator strength, average oscillator wavelength. The refractive index data at infinite wavelength which was found to obey single oscillator model which was found to increase from 2.27-2.56 as the doping percentage increase. The decreasing in the optical energy gap which was found according to Tauc model were (3.74-3.63) eV , is in good agreement with that obtained by wimple-DiDomenico model. The inverse behavior comp
... Show MoreA Mini-TEA CO2 laser system was designed and operated to obtain a pulse at 10.6 μm. Output energy of 30 mJ, with preionization pins, and pulse duration of 100ns were obtained. While an output energy of 6mJ and pulse duration of 100 ns in absence of pre-ionization were obtained. The system was operated with Ernest profile main-discharge electrodes. Dependencies of supply voltage and output laser energy on the pressure inside laser cavity were investigated as well as dependencies of supply voltage and output energy on the main capacitor(8CO2 : 8N2 : 82He :2CO). Efficiency of was calculated to be 4.4%.