In this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes
The Caputo definition of fractional derivatives introduces solution to the difficulties appears in the numerical treatment of differential equations due its consistency in differentiating constant functions. In the same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover the effect of using the inverse operator which tr
This paper aimed to determine the Optimal Reliable Frequency (ORF) that can maintain certain connection link between different transmitter/receiver stations laid over the Iraqi territory. Three different transmitting sites were chosen as tested stations located in the northern, central, and southern regions of Iraq. These sites are Mosul, Baghdad, and Basra, respectively. In this study, the years 2009 and 2014, which represent the minimum and maximum years of solar cycle 24, were chosen to examine the effect of low and high solar activity on the determined ORF. The datasets of the Best Usable Frequency (BUF) were calculated using the ASAPS international communication model. An analytical study was made on the generated BUF parameter data
... Show MoreDiverting river flow during construction of a main dam involves the construction of cofferdams, and tunnels, channels or other temporary passages. Diversion channels are commonly used in wide valleys where the high flow makes tunnels or culverts uneconomic. The diversion works must form part of the overall project design since it will have a major impact on its cost, as well as on the design, construction program and overall cost of the permanent works. Construction costs contain of excavation, lining of the channel, and construction of upstream and downstream cofferdams. The optimization model was applied to obtain optimalchannel cross section, height of upstream cofferdam, and height of downstream cofferdamwith minimum construction cost
... Show MoreAbstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
The adsorption study of thymol, was carried out at (25±0.1) °C, using granulated surfactant modified Iraqi Na – montmorillonite clay (initiated modified bentonite); in a down-flow packed column, the modified mineral was characterized by FT-IR spectroscopy. A linear calibration graph for thymol was obtained, which obey Beer's law in the concentration range of 5-50 mg/L at 274 nm against reagent blank. Single-factor-at-a-time approach; showed that the equilibrium time required for complete adsorption was 45 minute with flow rate (4.0drop/ mint). The adsorption of thymol increased with rising pH of the adsorbate solution, increase of solute uptake when the initial adsor
... Show MoreThis paper aims to introduce a concept of an equilibrium point of a dynamical system which will call it almost global asymptotically stable. We also propose and analyze a prey-predator model with a suggested function growth in prey species. Firstly the existence and local stability of all its equilibria are studied. After that the model is extended to an optimal control problem to obtain an optimal harvesting strategy. The discrete time version of Pontryagin's maximum principle is applied to solve the optimality problem. The characterization of the optimal harvesting variable and the adjoint variables are derived. Finally these theoretical results are demonstrated with numerical simulations.
In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw
... Show More